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Forward 
 
The field of multiscale modeling of materials promotes the development of predictive 
materials research tools that can be used to understand the structure and properties of 
materials at all scales and help us process materials with novel properties. By its very 
nature, this field transcends the boundaries between materials science, mechanics, and 
physics and chemistry of materials. The increasing interest in this field by 
mathematicians and computational scientists is creating opportunities for solving 
computational problems in the field with unprecedented levels of rigor and accuracy. 
Because it is a part of the wider field of materials science, multiscale materials research is 
intimately linked with experiments and, together, these methodologies serve the dual role 
of enhancing our fundamental understanding of materials and enabling materials design 
for improved performance. 
 
The increasing role of multiscale modeling in materials research motivated the materials 
science community to start the Multiscale Materials Modeling (MMM) Conference series 
in 2002, with the goal of promoting new concepts in the field and fostering technical 
exchange within the community. Three successful conferences in this series have been 
already held: 
 

� The First International Conference on Multiscale Materials Modeling (MMM-
2002) at Queen Mary University of London, UK, June 17-20, 2002, 

� Second International Conference on Multiscale Materials Modeling (MMM-2004) 
at the University of California in Los Angeles, USA, October 11-15, 2004, and  

� Third International Conference on Multiscale Materials Modeling (MMM-2006) 
at the University of Freiburg, Germany, September 18-22, 2006. 

 
The Fourth International Conference on Multiscale Materials Modeling (MMM-2008) 
held at Florida State University comes at a time when the wider computational science 
field is shaping up and the synergy between the materials modeling community and 
computational scientists and mathematicians is becoming significant. The overarching 
theme of the MMM-2008 conference is thus chosen to be “Tackling Materials 
Complexities via Computational Science,” a theme that highlights the connection 
between multiscale materials modeling and the wider computational science field and 
also reflects the level of maturity that the field of multiscale materials research has come 
to. The conference covers topics ranging from basic multiscale modeling principles all 
the way to computational materials design. Nine symposia have been organized, which 
span the following topical areas: 
 

� Mathematical basis for multiscale modeling of materials  
� Statistical frameworks for multiscale materials modeling  
� Mechanics of materials across time and length scales  
� Multiscale modeling of microstructure evolution in materials  
� Defects in materials  
� Computational materials design based on multiscale and multi-level modeling 

principles  
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 Multiscale modeling of radiation effects in materials and materials response under 
extreme conditions  

 Multiscale modeling of bio and soft matter systems  
 
The first five topical areas are intended to cover the theoretical and computational basis 
for multiscale modeling of materials. The sixth topical area is intended to demonstrate the 
technological importance and industrial potential of multiscale materials modeling 
techniques, and to stimulate academia-laboratory-industrial interactions. The last two 
topical areas highly overlap with the earlier ones, yet they bring to the conference distinct 
materials phenomena and modeling problems and approaches with unique multiscale 
modeling aspects. 
 
This conference would not have been possible without the help of many individuals both 
at Florida State University and around the world. Of those, I would like to thank the 
organizing team of MMM-2006, especially Professor Peter Gumbsch, for sharing their 
experience and much organizational material with us. I also thank all members of the 
International Advisory Board for their support and insight during the early organizational 
phase of the conference, and the members of the International Organizing Committee for 
the hard work in pulling the conference symposia together and for putting up with the 
many organization-related requests.  Thanks are due to Professor Max Gunzburger, 
Chairman of the Department of Scientific Computing (formerly School of Computational 
Science) and to Florida State University for making available financial, logistical and 
administrative support without which the MMM-2008 would not have been possible. The 
following local organizing team members have devoted significant effort and time to 
MMM-2008 organization: Bill Burgess, Anne Johnson, Michele Locke, Jim Wilgenbusch, 
Christopher Cprek and Michael McDonald. Thanks are also due to my students Srujan 
Rokkam, Steve Henke, Jie Deng, Santosh Dubey, Mamdouh Mohamed and Jennifer 
Murray for helping with various organizational tasks. Special thanks are due to Bill 
Burgess and Srujan Rokkam for their hard work on the preparation of the proceedings 
volume and conference program. 
 
I would like to thank the MMM-2008 sponsors: Lawrence Livermore National 
Laboratory (Dr. Tomas Diaz de la Rubia), Oak Ridge National Laboratory (Dr. Steve 
Zinkle) and Army Research Office (Drs. Bruce LaMattina and A.M. Rajendran) for the 
generous financial support, and thank TMS (Dr. Todd Osman) for the sponsorship of 
MMM-2008 and for advertising the conference through the TMS website and other TMS 
forums. 
 
I would also like to thank all plenary speakers and panelists for accepting our invitation 
to give plenary lectures and/or serve on the conference panels. Lastly, I would like to 
thank the session chairs for managing the conference sessions.  
 
Anter El-Azab 
Conference Chair 
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Development of sequential multi-scale analysis for nano structured materials 
 
 

Maenghyo Cho1, Seunghwa Yang1, Jinbok Choi1 
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San 56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-744, South Korea 

(E-mail: mhcho@snu.ac.kr) 
 

ABSTRACT 
 

In this study, sequential multi-scale bridging method to characterize the size effect of 
nanoparticle on the mechanical properties of nanoparticle/polymer composites is developed and 
verified through a molecular dynamics(MD) simulation and continuum micro mechanics. In 
order to obtain the size effect of nanoparticle in detail, two sets of nanocomposites having dilute 
and non-dilute concentration of nanoparticles are considered in MD simulations. In total, five 
different unit cells with different particle size and same volume fractions were prepared in each 
case. Spherical silica nanoparticle and amorphous polyimide were chosen as reinforcement 
particulate fiber and matrix respectively and Parrinello-Rahman fluctuation method was used to 
obtain mechanical properties of each systems. In accordance with the volume fraction of each 
sets, two different multi scale bridging methods are developed incorporating the effective 
interface as a characteristic phase to describe the particle size effects. Postulating that the 
Young’s modulus and shear modulus of the interface as functions of particle radius, monotonous 
decaying functions to represent shear modulus and Young’s modulus were obtained from the 
least square approximation. In order to validate present scale bridging method, overall elastic 
modulus of nanocomposites are obtained using finite element analysis. As a result, enhanced 
reinforcing effect was observed in smaller particle reinforced cases and the present bridging 
method accurately follows MD simulation results. Also, elastic modulus obtained from the finite 
element analysis showed reliability and applicability of the present method for the design of the 
nanocomposites with continuum-based analysis. 
 
1. Introduction 
 

Due to the recent advance of nano-scale manufacturing technology, various types of nano-
structured materials are developed and studied for their practical applications[1]. Among those 
nano materials, polymer-based nanocomposites with nanoparticles attract many researchers for 
their unusual properties and multi-functionalities[2]. It is generally known that the characteristics 
of the nano-sized particles are originated from the increased ratio of interface area to the volume 
of spherical particles and many researches are accompanied to verify and consider the size effect 
of particles. Regarding the effect of particle size on the mechanical properties, both positive and 
negative effects have been reported till now[3-4] and it still remains as an ongoing argument.  

In this study, mechanical properties of the silica nanoparticle reinforced polymeric 
composites are characterized and the size effect of the nanoparticle is studied through a 
molecular dynamics(MD) simulation, micromechanics of dilute and non-dilute composites and 
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finite element method(FEM). The effective interface was adopted as a characteristic phase 
between the nanoparticle and matrix polymer and the way how to define the elastic modulus and 
volume fractions of the interface are elucidated in detail. 

2. Molecular dynamics simulation 

In MD simulations, commercial molecular simulation program MATERIAL STUDIO 4.0 was
used and ab-initio COMPASS force field[5] which is optimized to condensed phase materials is 
chosen to describe inter- and intra-molecular interactions. The COMPASS forcefield is 
composed of three parties, valence, cross-terms and non-bond interactions and totally 12 terms 
are incorporated. 

In order to obtain particle size effect on the mechanical properties of nanocomposites, two 
kinds of molecular structures categorized as dilute concentration (low volume fraction) and non-
dilute concentration (high volume fraction) are prepared. In each sets, five unit-cells having 
different particle radius with same volume fraction were constructed. The radius of selected 
nanoparticle(SiO2, silica) ranges from 5.6Å to 8.89 Å in dilute nanocomposites and from 9.07Å 

to 12.01Å in non-dilute nanocomposites. Polyimide was chosen as amorphous matrix. Each 
polyimide molecular chain is composed of 12 repeated unit monomers and the number of chains 
in each sample sets is determined from the same volume fraction condition (in this study, 0.03 
for dilute composites and 0.12 for non dilute composites). Details of the composition of the 

8.89Å silica nanoparticle

Imide unit monomer

          
     (a) Molecular unit cell       (b) Continuum model       (c) RVE of FEM model

Figure.1 : Unit cell structures of nanocomposites and equivalent continuum models 

Table 1 Unit cell compostions of nanocomposites 

(a) Dilute concentration                                     (b) Non-dilute concentration 

System Particle
radius(Å) 

No. of 
chains 

Cell
length(Å) 

Vol. 
fraction System Particle 

radius(Å)
No. of 
chains 

Cell
length(Å) 

Vol. 
fraction

NPC3 5.6 3 29.07 0.03 NDPC4 9.97 4 32.64 0.12

NPC4 6.16 4 31.99 0.03 NDPC5 10.74 5 35.16 0.12

NPC6 7.05 6 36.62 0.03 NDPC6 11.41 6 37.36 0.12

NPC10 8.36 10 43.42 0.03 NDPC7 12.01 7 39.32 0.12

NPC12 8.89 12 46.14 0.03 NDPC8 12.56 8 41.04 0.12
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particle, matrix and initial geometrical information of each cell are arranged in Tab 1 and 
atomistic structures of the constituents and unit cells are illustrated in Fig. 1. 

After constructing the initial structures, the cells are minimized to their lowest potential energy 
state using Conjugate gradient method. After minimization, all the simulation cells are 
equilibrated at 300K and 1bar. In the equilibrated statge, totally 900ps(pico second) of 
isothermal and isobaric ensemble simulation(NPT) is applied via Andersen and Berendsen 
methods to control the external temperature and atmospheric pressure respectively. Elastic 
constants of the unit cells are obtained using Parrinello-Rahman fluctuation method. In order to 
ensure computational accuracy, all the molecular dynamics data were obtained from average 
over three and five different production runs in dilute and non-dilute cases respectively. 

 

Resultant Young’s modulus and shear modulus of dilute nanocomposites and non-dilute 
nanocomposites are arranged with standard deviations in Tab 2. As shown in Tab 2, both 
Young’s and shear modulus of the nanocomposites decrease as the particle radius increases. 
Based on the results obtained from MD simulations, elastic modulus of the interface can be 
estimated and the details of interface characterization will be described in next part. 

3. Scale bridging method

3.1 Dilute effective interface model 
As was shown in previous MD simulation results, elastic modulus of nanocomposites can be 

affected by the size of their reinforcing particles. In case of dilute concentration, Mori-Tanaka 
method has been widely used to estimate the effective elastic modulus of composites. But as this 
model only considers volume fraction and stiffness matrix of particle and matrix, this method is 
not suitable for nanocomposites. So, modified three-phase model consists of particle, matrix and 
effective interface between particle and matrix was considered as below 

� �� � � � � � 1

m p i i m pi p p i p m p i pif f f f f f
�

� � � �� � � � � � � �	 
 	 
C C C C A C C A I A             (1) 

where, C and f with subscript are the stiffness matrix and volume fraction of each phase and the 
subscript p, i, m corresponds to the particle, interface and matrix. piA and pA are strain 
concentration tensors of particle and effective particle(particle with interface)[6]. In order to 
define the elastic modulus of effective interface, Eqn(1~2) were rearranged with respect to the 
stiffness matrix of the interface iC .

Table 2 Elastic modulus of the nanocomposites obtained from MD simulations 

System E(Gpa) G(Gpa) System E(Gpa) G(Gpa) 

NPC3 3.81±0.43  1.37±0.16  NDPC4 4.66±0.10 1.74±0.04 
NPC4 3.39±0.16  1.26±0.08  NDPC5 4.20±0.53 1.54±0.20 
NPC6 3.12±0.26  1.14±0.13  NDPC6 3.99±0.26 1.45±0.11 

NPC10 2.89±0.24  1.04±0.08  NDPC7 3.81±0.22 1.38±0.09 
NPC12 2.76±0.28  1.00±0.09  NDPC8 3.60±0.34 1.30±0.14 
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Then, after defining the volume fraction of the effective interface, stiffness matrix of effective 
interface can be implicitly obtained from Eqn(2).  

3.2 Non-dilute effective interface model 
    In case of highly concentrated composites, both particle-particle and particle-matrix 
interaction dominates the overall elastic behavior of composites. So, multi-inclusion model[7] 
was adopted for non-dilute nanocomposites unit cells and effective elastic modulus of 
nanocomposites can be give as  

� �
1N N

inf r r r r
r=1 r=1

f f
�

� � � � �  �� � � �� � � �� � � �
� � � �	 
 	 

� �C C I S I � I S �                                             (3) 

where infC is the stiffness matrix of the infinite medium surrounding the concentric layers of 
composites, rC  and f  are the stiffness matrix and volume fraction of rth constituent, and r� is
given as 

� �
11

r inf r inf

��� �� � �	 
� C C C S                                                           (4) 

where  S  is the Eshelby’s tensor of the isotropic spherical inclusion. 
In case of thick-coated particle which is a special case of FGM, all the elastic moduli of coated 

layer are identical (but resultant stress distributions in each coated layer are not identical), only 3 
constituent(r = p, i, m corresponds to particle, coating and matrix) are defined and manipulation 
of Eqn(3) with respect to the stiffness matrix of effective interface becomes easier. Eqn (3~4) 
were rearranged with respect to the interface stiffness matrix iC in order to calculate the interface 
stiffness matrix 

� �� �� � 111
i i p p m m inf p p m m( )( ) ( )f f f I f f

��
�� �

� � � � � � � � �� �
	 


C C I I S I � � CC S � � S            (5)  

Generally, in the application of Eqn(3) to the effective stiffness matrix of composites, infC is set 
equal to the stiffness matrix of the composites C [7], and as a result, the solution of the Eqn(3) is 
numerically obtained(This is similar to the Self Consistent method). On the other hands, in 
bridging process using Eqn(5), effective stiffness matrix of the nannocomposites is already given 
and iC was obtained from the assumption that the stiffness matrix of the infinite medium infC
was set equal to the stiffness matrix of the nanocomposites obtained from MD simulation. 

3.3 Determination of the volume fraction of the interface 
Prior to the calculation of the stiffness matrix of the effective interface using Eqn(3) and 

Eqn(5), volume fraction of the effective interface should be determined and it was estimated 
from the variation of the radial density distribution of the matrix polymer. Details of the 
estimation is shown in Ref[6] and resultant values are obtained as 7Å and 6.3 Å in dilute and 
non-dilute case respectively with the outer diameter of the adsorption layer as 4Å. In bridging 
process, the thickness of the interface can vary and both thick and soft or thin and stiffer phase 
are possible but the combination of the thickness and stiffness of the interface does not affect the 
estimation of the overall elastic modulus. The detailed description will be reported elsewhere. 
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4. Results and discussions  

In order to correlate the elastic modulus of the effective interface with particle radius, both 
Young’s and shear modulus of the effective interface were obtained from the stiffness matrix and 
fitted into the linear function of particle radius in logarithmic scale. Elastic modulus of the 
effective interface of the nanocomposites obtained from Eqn(2) and Eqn(5) are listed in Tab 3. 

As the particle radius increases, both modulus decrease and these variations describe the particle 
size-dependent elastic modulus variation of the nanocomposites. From the discrete values shown 
in Tab 3, Young’s and shear modulus of the effective interface were fitted into the linear 
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Figure. 3  Elastic modulus of the Non-dilute nanocomposites obtained from Non-dilute multi-scale analysis and 
FEM analysis 
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Figure 2.  Elastic modulus of the dilute nanocomposites obtained from dilute multi-scale analysis and FEM 
analysis 

Table 3 Elastic modulus of the effective interface 
(a) Dilute composites with dilute model             (b) Non-dilute composites with non-dilute model 

System NPC3 NPC4 NPC6 NPC10 NPC12  System NPC4 NPC5 NPC6 NPC7 NPC8

E(Gpa) 9.78 6.87 6.09 5.13 3.79  E(Gpa) 5.13 4.17 3.76 3.36 2.85

G(Gpa) 3.38 2.93 2.34 1.79 1.44  G(Gpa) 1.93 1.51 1.33 1.17 0.99
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function of the particle radius and under the assumption that the interface is isotropic, stiffness  
matrix of the effective interface can be reconstructed from both modulus as a function of the 
particle radius, as � �I I pr�C C .

Elastic modulus obtained from the present bridging methods are obtained and compared in Fig. 
2 and 3 with respect to the dilute and non-dilute compositions. As shown in each figures, the 
present bridging model accurately describes the particle size effect. In order to verify the present 
bridging method, elastic moduli of the nanocomposites are obtained from finite element analysis. 
In FEM verification, elastic moduli obtained from the bridging methods are used as input 
parameter of material properties and elastic modulus are obtained from the stress-strain relation 
under the pre-defined small uniaxial stress. As can be seen in Fig.2( c) and 3(c ), elastic modulus 
obtained from MD, bridging method and FEM agree very well without any significant error. 

5. Conclusion
In this study, efficient multi-scale analysis was developed and verified through MD 

simulations, scale bridging method based on the micromechanics and FEM. Overall elastic 
modulus showed enhanced reinforcing effect at smaller particle radius cases and the present 
bridging technique with the effective interface modeling showed accurate description of the 
particle size effect and applicability in FEM. Present multi-scale bridging method is expected to 
be a conventional analysis tool as a intermediate step for the linkage of the atomistic structures 
and macroscopic properties in the design of the nanocomposites.  
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ABSTRACT 
 
 
   In recent years, much attention has been paid to materials having bimodal structures consisting 
of nanostructured grains and submicron grains. It is known that a material having a bimodal 
structure has a high strength without large decrease of ductility. 
   The present paper describes the FEM code the present author has developed based on the 
theory of the polycrystal plasticity with dislocation distributions taken into account. The code 
also takes into account the three-stage stress-strain curves of individual grains. In order to 
simulate the deformation behavior of materials having bimodal structures, it is necessary for the 
code to simulate the mesoscopic deformation behavior with the size effect of the initial yield 
strength, or the 0.2% proof strength. The present code can simulate the size effect of 0.2% proof 
strength by modifying the Bailey-Hirsch relation. By using the modified relation, the size effect 
of the initial plastic yield is successfully reproduced.  
   Simulations of tensile deformation behavior in alminum and copper alloys having bimodal 
structures are made by the developed code. Aluminum has higher stacking fault energy than 
copper and thus the alloys show different hardening behavior. The paper discusses the effects of 
the third stage of the shear stress vs. shear strain curves of the individual grains on the 
macroscopic nominal stress vs. strain curves of the polycrystalline alloys, or aggregates of the 
grains, having bimodal structures. 
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ABSTRACT 
 
 
   We propose to model thick multiwalled carbon nanotubes (MCNTS) as beams with non-
convex curvature energy. Such models develop stressed phase mixtures composed of smoothly 
bent sections and rippled sections [1]. This model is motivated by experimental observations and 
large-scale atomistic-based simulations[2,3,4]. The model is analyzed, validated against large-
scale simulations, and exercised in examples of interest. It is shown that modelling MWCNTs as 
linear elastic beams can result in poor approximations that overestimate the elastic restoring 
force considerably, particularly for thick tubes. In contrast, the proposed model produces very 
accurate predictions both of the restoring force and of the phase pattern. We characterize through 
large-scale simulations the nonlinear elastic response of MWNCNTs in torsion and bending [5]. 
We identify a unified law consisting of two distinct power-law regimes in the energy-
deformation relation. This law encapsulates the complex nonlinear mechanics of rippling and is 
described in terms of elastic constants, a critical length-scale and an anharmonic energy-
deformation exponent. The mechanical response of MWCNTs is found to be strongly size-
dependent, in that the critical strain beyond which they behave nonlinearly scales as the inverse 
of their diameter. These predictions agree with available experimental observations.  
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ABSTRACT 
 

CNT-reinforced polymer composites have attracted attention due to their exceptional high 
strength. The high strength can be affected by the presence of defects in the nanotubes used as 
reinforcements in the practical nanocomposites. In this paper, a Molecular Structural Mechanics / 
Finite Element (MSM/FE) multiscale modeling is used to study the effect of carbon nanotube 
geometrical defects on the stability of SWCNT-polymer composites. Here, two types of 
representative volume elements (RVEs) for these nanocomposites are considered with perfect 
and defected CNT. These RVEs have the same dimensions. The nanotube is modeled at the 
atomistic scale using molecular structural mechanics whereas the polymer matrix deformation is 
analyzed by the finite element method. For modeling the polymer matrix, a three-dimensional 
eight-noded element is employed. The nanotube and polymer matrix are assumed to be bonded 
by van der Waals interactions based on the Lennard-Jones potential. In order to study the 
stability of the nanocomposites, the buckling strain is calculated for perfect and defected carbon 
nanotubes in the polymer nanocomposites. The results reveal that the presence of defects causes 
a decrease in axial buckling strain in comparison with perfect SWCNT-polymer composites.    
 
1. Introduction 
 
The discovery of carbon nanotubes has opened the door to enhance the mechanical properties of 
polymer composites by adding CNTs to the matrix materials. It has been theoretically and 
experimentally confirmed that carbon nanotubes possess exceptional high stiffness and strength 
[1]. These properties as well as their high aspect ratio and low density suggest that carbon 
nanotubes can be considered as ideal reinforcements for nanocomposites. In order to achieve the 
outstanding mechanical properties of CNTs, there are many problems to be considered. One of 
the most important issues is the presence of defects in the carbon nanotubes. We refer to defects 
in a broad sense of the word to reflect deviation of the material from the regular atomic scale 
structure. Thus, in the case of CNTs, defect is defined as a distortion of the perfect nanotube, 
which is a cylindrical graphene sheet, composed only of hexagons, except at each end [2].  
The possible CNT defects can be classified into four main groups: incomplete bonding defects 
(vacancies, dislocations, etc), topological defects (introduction of ring sizes other than 
hexagons), rehybridization defects (ability of carbon atom to hybridize between sp2 and sp3), and 
heterogeneous defects (doping with other elements than carbon). It has been found that there is a 
decrease in stiffness of nanotubes in the presence of defects. The local elastic moduli are found 
to reduce to 60 % that of the defect-free nanotube [3]. Among the various types of defects in 
CNTs, vacancies have received much more attention than others. Vacancies result from missing 

Multiscale mechanics

163



carbon atoms in the CNT walls that can happen when CNTs are subjected to irradiation. The 
carbon atoms might be knocked out by either high-energy electrons or ions. 
The objective of this work is to examine the effect of CNT geometrical defects on the buckling 
onset strain of CNT-reinforced polymer composites using a MSM/FE multiscale modeling 
approach. In this method, the nanotube is modeled at the atomistic scale by the molecular 
structural mechanics method. The matrix deformation is analyzed at the macroscopic scale by the 
continuum finite element method. The nanotube and polymer matrix are assumed to be bonded 
by van der Waals interactions at the interface. This model is used to study the effect of CNT 
vacancy defects on the stability of CNT/polymer composites. To this end, the buckling onset 
strain is calculated for perfect and defected carbon nanotubes in the polymer nanocomposites. 
The results reveal that the presence of defects causes a decrease in the axial buckling strain in 
comparison with perfect SWCNT-polymer composites. 

 
 

2. Modeling 
 
From the traditional theoretical frame for evaluating the macroscopic mechanical properties of 
composites, a possible approach is to build up a representative volume element (RVE) 
constituted by a cubic body of matrix with an embedded nanotube [4]. In a similar manner, the 
stability behavior of CNT/polymer composites in the presence of CNT vacancy defects is 
predicted in this paper using MSM/FE multiscale modeling. 
To construct this RVE, first, molecular structural mechanics is implemented to model the carbon 
nanotube in atomic scale. In this method, a SWCNT is viewed as a space frame, where the 
covalent bonds are represented as connecting beams and the carbon atoms as joint nodes. The 
element used for the covalent bonds is a uniaxial element with tension, compression, torsion, and 
bending capabilities and has six degrees of freedom at each node; three translations in x, y, and z 
directions and three rotations about x, y, and z axes. This element is defined by cross sectional 
area, moment of inertia, and material properties based on the energy equivalence between local 
potential energies in computational chemistry and elemental strain energies in structural 
mechanics. To this end, the force field constants of the covalent bonds are used as follows [4]: 

 

, ,r
EA EI GJK K K
L L L� �� � �                                              (1) 

 
where the force field constants rK , K � , and K �  represent stretching, bending and torsional 
stiffness of the covalent bonds, respectively. Also, E and G denote moduli of elasticity and shear 
of the element, respectively. Moreover, A is the cross sectional area, I the moment of inertia, J  
the polar moment, and L the length of the beam. The length of the element is assumed to be 
equal to the covalent distance of the carbon atoms (0.142 nm). Specific parameters of the 
element with a circular cross section could be obtained from Eqn (1) as: 
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where d  is the cross-sectional diameter of the element. Here, the force field constants obtained 
experimentally in the context of computational chemistry by Cornell et al. in 1995 are used. 
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These values are; 16.52 2rK e nN nm �� , 28.76 1K e nN nm rad�
�� � , and 22.78 1K e nN nm rad�

�� � . In 
order to analyze the outer polymer matrix, continuum-based finite element formulation is 
implemented. Here, an isoparametric cubic element is used for modeling the matrix. The element 
is defined by 8 nodes having three translational degrees of freedom per node. The nanotube and 
polymer matrix are assumed to be bonded by van der Waals interactions based on Lennard-Jones 
potential at the interface. For modeling these forces, spring elements are implemented in this 
work. The spring element used here is defined by two nodes and a spring constant. It is a uniaxial 
tension-compression element with three translational degrees of freedom at each node.The spring 
stiffness of this element is determined by the second derivative of the LJ potential, as follows: 
 

,                                                                                           (3) 
 
where r is the interatomic distance, and �  and � are the Lennard-Jones parameters. For carbon-
carbon van der Waals interactions, these parameters are 0.0556 /kcal mol� � and 3.4A� � � [4]. For 
computational modeling, a cylindrical unit cell, as shown in Fig. 1, is chosen as representative 
volume element (RVE). Geometrical characteristics of the RVE are as follows:   
Armchair nanotube (5, 5): Radius = 0.34 nm, Length = 34.36 nm 
Polymer matrix: Length = 34.36 nm, Inner radius = CNT vdwR h	 = 0.34 + 0.18 = 0.52 nm 
where vdwh is the van der Waals separation distance between the CNT and polymer matrix.   
Cross sectional dimension = 4.11 nm (carbon nanotube volume fraction equals to 5%) 
In order to study the effect of vacancy defects on the stability of the nanocomposite, after 
constructing the RVE, we impose the geometrical defects. This is done by removing the proper 
nodes and elements from the model in accordance with removed atoms and bonds that might be 
knocked out by either high-energy electrons or ions in the synthesis process. In this study, we 
consider single, double and triple vacancies in the nanotube structure, as shown in Fig. 2. 
 

 

 
 

Figure 1. Schematic of computational model 
for CNT/Polymer composite 

Figure 2. Atomic networks of SWCNTs with  
a) single, b) double c) triple vacancies [3] 

 
3. Results and discussions 
 
Using the molecular structural mechanics approach and the finite element method, the 
computational modeling of continuous CNT-reinforced polymeric matrix composites has been 
carried out in this paper. The main objective is to investigate the effect of CNT geometrical 
defects on the stability of these nanocomposites. To this end, the strain resulted in buckling is 
determined for perfect and defected carbon nanotube polymer composites. For this purpose, 
considering nonlinear analysis, we assume large deformations to occur during compression. One 
end of the nanocomposite is fixed and the other end is axially compressed in 100 steps. To 
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understand when buckling occurs, the axial force versus imposed displacement is plotted for one 
of the nodes subjected to the axial loading. After buckling, this force drops drastically. 
In order to study the effect of carbon nanotube vacancy defects, the buckling onset strain is 
determined for CNT-polymer composites with different geometrical defects such as single, 
double and triple vacancies. The results depicted in Tab 1 show that increasing the vacancies in 
CNTs, causes a noticeable decrease in the buckling onset strain of nanocomposites. Also, it is 
found that by increasing the axial load, the second mode of buckling can be achieved in the 
CNTs as shown in Fig. 3. The numbers in parenthesis give the percentage of reduction in the 
onset buckling strain of the defected nanocomposite in comparison with perfect one. 

 
Table 1. Reduction in the axial buckling strain of CNT/polymer composites due to different 

types of vacancy defects   
Triple Vacancy Double Vacancy Single Vacancy Perfect CNT Type of Vacancy 

0.35% 
(83.7) 

0.41% 
(81) 

0.41% 
(81) 2.15% Onset buckling strain 

(%)-First mode 
1.05% 
(51.2) 

1.09% 
(49.3) 

1.11% 
(48.4) 2.15% Onset buckling strain 

(%)-Second mode 
 
 
 
 
 
 
 
 

Figure 3. First & Second mode of buckled CNT  
  

4. Conclusions 
 

In this paper, a MSM/FE multiscale modeling of carbon nanotube/polymer composites under 
compression was implemented to study the role of carbon nanotube geometrical defects on the 
stability of these nanocomposites. The simulations revealed the strong effect of CNT defects on 
this behavior. It was shown that by considering the defects in the structure of carbaon nanotubes 
which is a common problem in the synthesis process of these nanostructures, the buckling onset 
strain of embedded carbon nanotube decreases drastically. 
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ABSTRACT 
 
In many engineering applications materials which possess an underlying (heterogeneous) micro-
structure play an important role. The simulation of such classes of materials, like e.g. fibre-
reinforced composites, often demands the determination of the macroscopic material behavior in 
each material point based on the analysis of the underlying micro-setting, rather than a-priori 
assumed constitutive (overall) assumptions. Therefore, in our finite-element framework we 
obtain the required macroscopic stresses and the tangent operator within a computational 
homogenization scheme -see e.g. [1] and [2]- by solving a boundary value problem for an 
associated representative volume element (RVE) on the micro-level. The scope of the current 
work is the extension of the classical computational homogenization scheme to the 
homogenization of material forces. In contrast to classical spatial forces in the sense of Newton 
which are linked to the variation of spatial positions of physical particles with respect to the 
ambient space, the material forces in the sense of Eshelby are linked to the variations of material 
positions of physical particles with respect to the ambient material. This material description 
exhibits a wide range of applications in the field of defect mechanics. It can be shown that the 
material force at a crack tip corresponds to the J-integral –introduced by Rice [3]- which allows 
to decide whether a crack propagates or not. In this context the main goal of the extended 
homogenization scheme is to investigate the influence of different micro-structures onto the 
macroscopic material forces. Based on the pointed out analogy between the material force at a 
crack tip and the J-integral, this particular homogenization scheme is applied to study the impact 
of different heterogeneous micro-structures onto the macroscopic defect driving forces. 
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ABSTRACT 
 

A method of numerical material testing is developed for evaluating the macroscopic yield 
strength of steel products after cold working process.  The method is realized by the micro-macro 
decoupled analyses based on the crystal plasticity homogenization method.  A unit cell for 
micro-scale analyses, which is composed of several grains, is regarded as a numerical specimen 
in this method.  After validating the method of decoupled nonlinear homogenization, we devise a 
stepwise procedure for evaluating the yield strength of steel pipes subjected to cold-working.  
First, we perform a numerical simulation of a Pilger mill rolling process for a steel pipe. Second, 
the obtained macroscopic deformation history is applied to the unit cell to obtain the numerical 
specimens after the forming process.  Then, numerical material tests are conducted on the 
specimens to characterize the anisotropy in macroscopic yield strengths and their results are 
compared with the experimental data. 
 
 
1. Introduction 
 
Most of steel members formed by cold working often reveal anisotropy in strength of 
polycrystalline metals. Some anisotropic material behaviors are caused by residual stresses and 
texture development inside the material. The understanding and prediction of such anisotropic 
strength is critical especially in designing and forming some types of steel members such as oil 
well tubular, which is most probably under severe usage environment. It is, however, difficult to 
predict the post-forming strength of metals that have experienced various plastic deformations 
and resulting residual stresses during cold working.  
 
In this paper, we propose a method of numerical material testing for evaluating the macroscopic 
yield strength of polycrystalline metals after cold-working processes. The method is based on the 
micro-macro decoupled computational strategy along with crystal plasticity model [2, 3] for 
crystalline aggregates, which was originally introduced as an alternative to the micro-macro 
coupled or simultaneous analysis method for nonlinear homogenization of a variety of 
heterogeneous media with periodic microstructures, i.e., unit cells [1]. After validating the 
method of decoupled nonlinear homogenization, we devise a stepwise procedure for evaluating 
the post-forming yield strength of steel products. Then, by taking a cold-Pilger mill rolling 
process of a steel pipe as an example, we demonstrate the promise and potential of the proposed 
method with reference to the actual experimental data.  
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1. Method of Numerical Material Testing 
 

1.1 Governing equation for representative volume elements 
 
The governing equations for our numerical material testing on the reference configuration 0Y  of 
a representative volume element (RVE) are given as follows: ( )YÑ × =P Y 0  and =F  

( )( )YÑ +w Y Y ˆ= + = + +H 1 H H 1�  along with the constitutive equations in crystal plasticity 
[2] that relates F  to P . Here, Y  is the position vector in 0Y , ( )P Y  is the microscopic nominal 
stress, F  is the microscopic deformation gradient and ˆ= +H H H�  is the microscopic 
displacement gradient, where H�  and Ĥ  are respectively the uniform and periodic parts [4].  We 
employ the periodic boundary conditions for microscopic displacement fields such that 

( )A B A B( ) ( )- = × -w Y w Y H Y Y� , where and subscripts A and B indicate evaluation points on 
mutually opposite boundary surfaces of the RVE, and H�  is constant with respect to Y . Also, the 
corresponding macroscopic nominal stress is defined as ( )

0
01 ( )

Y
Y dY= òP P Y�  where 0Y  is the 

volume of the RVE in the initial configuration.  
 
We employ the rate-dependent crystal plasticity constitutive model as in [3] for the material 
behavior of grains. The slip rate ( )ag�  of �-th slip system is given by 

( ) 1( ) ( ) ( ) ( ) ( )
0

n
g ga a a a ag g t t

-
=� � , where 0g�  the reference strain rate, ( )at  is the resolved shear 

stress and n is the material rate sensitivity  parameter. Here, ( )g a  is a function of the sum 
slip ( )

1 0

tn dta
a

g g
=

= å ò �  so that its rate is evaluated as slip( ) ( )
1

ng ha b
abb

g
=

= å� � . In this expression, 
ha b  is the hardening modulus such that ( ) (1 ) ( )h qH q Hab abg g d= + -  with  

2
0 s 0( ) sinh ( )H Hg g t t= - , where 0H  is the initial hardening modulus, st  the saturated 

strength and ( )
0 : (0)g at =  is the critical resolved shear stress. The St. Venant model :=S E  

is assumed for elastic response of crystal grains, where S  is the 2nd Piola-Kirhhoff stress, E  is 
the Green-Lagrange strain tensor and  is the elasticity tensor whose independent components 
are 11C , 12C  and 44C .  
 
  

1.2 Numerical material testing with two-scale metal forming analysis 
 
The first step of the proposed strength evaluation method is to generate a numerical specimen 
composed of several crystal grains, each of whose inelastic behavior is characterized by a crystal 
plasticity model described above, and to identify the microscale material parameters by 
calibration experiments on actual specimens. At the same time, we carry out a macroscopic metal 
forming simulation of the cold working process of a steel product by employing a classical 
plasticity model. Here, the macroscopic material parameters have to be determined by the 
calibration experiments independently of the microscopic counterparts.  
 
In the second step, the macroscopic deformation history obtained by the metal forming 
simulation is imposed on the numerical specimen prepared in the first step to reproduce the 
microscopic state after cold-working. The third step is the simulation of the process of cutting 
out the numerical specimen form the macroscopic product to have the microscopic state 
equivalent to actual specimens cut out and shaped for strength tests. Finally, numerical material 
tests are conducted on the prepared numerical specimens to characterize the anisotropy in 
macroscopic post-forming yield strengths.  
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2. Numerical example 
 

2.1 Polycrystalline aggregate model and identification of grain’s material parameters 
 
The material we selected is a SUS304 stainless steel whose crystal structure is known as FCC. 
The unit cell employed in this numerical example is a polycrystalline aggregate, which has 54 
crystal grains, and the orientations of grains are assumed to be randomly distributed. Using the 
finite element (FE) model shown in Fig. 1(a), we carry out the numerical material test in order to 
identify the material parameters for the crystal plasticity model employed in this paper. The 
identified material parameters are as follows: C11=127509, C12111346, C44=85305, h0=220.0, �s 
=330.0 and �0=93.0. The resulting calibration plot is shown in Fig. 1(b). Here, we assume q=1.4 
as in [2] without identification.  
 

 
 
Figure 1. Unit cell model and identification of material parameters for crystal grains. 

 
 

2.2 Macroscopic metal forming analysis 
 
A Pilger mill rolling process of a steel pipe made of polycrystalline metal is simulated to 
evaluate the macroscopic mechanical behaviour subjected to cold-forming. This forming process 
is performed to reduce the diameter and the radial thickness of the pipe by drawing it by 10 mm 
and then rotating by 63 degree as illustrated in Figs. 2(a) and (b), the latter of which depicts the 
trajectory of a macroscopic material point of the pipe. The rolling process is conditioned so that 
the initial outer diameter 69.0 mm of the pipe becomes 60.5 mm, whereas the radial thickness 
11.5 mm is reduced 10.0 mm; see Fig. 2(c).  In this study, we employ the Rrandtl-Reuss flow 
theory with isotropic-kinematic (combined) hardening for the elastic-plastic behaviour of 
macroscopic material point. 
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Figure 2. Cold Pilger mill rolling process of a steel pipe. 

 
 

2.3 Microscopic metal forming analysis 
 
After the macroscopic analysis of the Pilger mill rolling of the steel pipe, we proceed to the 
microscopic forming analysis on the unit cell model prepared above. This is called the 
localization analysis in the context of the homogenization method. For the analysis of the unit 
cell, we first select a representative macroscopic material point relevant for the macroscopic 
strength evaluation and then impose to it the deformation history, i.e., the set of time-series data 
of the macroscopic deformation gradient = -F H 1� � , which has been obtained in the 
macroscopic simulation.  The volume average of the resulting microscopic stress, namely the 
macroscopic stress evaluated by the microscopic analysis, is presented in Fig. 3, with which the 
result obtained in the macroscopic analysis is put down.  As can be seen from this figure, the 
histories of both macroscopic stresses are completely different, though the deformation histories 
are the same.   It is, however, expected that the result of the localization analysis for the unit cell 
is more reliable than that evaluated with the classical plasticity model, since the macroscopic 
stress evaluated from the microscopic one contains more information about the mechanism of the 
macroscopic material behaviour.  
 
 

2.4 Preparation of a numerical specimen for macroscopic strength evaluation 
 
In order to investigate the anisotropy in the macroscopic yield strength of the metal after the 
forming, we need to perform numerical material tests on the unit cell that has experienced the 
cold-working performed in macro-scale.  Also, for validating the method based on the micro-
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macro decoupled analysis, the estimated post-forming strengths must be compared with those 
obtained by the actual experiment. However, the actual material test was carried out on the 
specimens cut out form the steel pipe after the forming, while the unit cell after the microscopic 
forming analysis above is assumed to be embedded in the macroscopic pipe. Therefore, for the 
purpose of comparison, we have to carry out an additional microscopic analysis by simulating 
the cutting out the numerical specimen, which is assumed to be the unit cell with the 
macroscopic stress being released. Preparing the boundary conditions corresponding of the unit 
cell to the actual cutting out process of the specimen, we perform the microscopic analysis to 
have a macroscopically stress-free numerical specimen; see Fig. 4.    
 

 
 
Figure 3. Macroscopic stress responses obtained from micro- and macroscopic analyses. 

 

 
 
Figure 4. Numerical specimen and macroscopic strength evaluation 

 
 

2.5 Macroscopic strength evaluation 
 
Using the numerical specimen whose macroscopic stress has been released (see Fig. 4), we 
conduct a series of numerical material testing to characterize the anisotropy in the macroscopic 
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post-forming yield strength.  Figure 5 shows the comparison between the experimental and 
analytical results. As can be seen from this figure, the proposed method provides reliable values 
of macroscopic yield strengths in different directions in comparison with the experimental ones.  
 
The anisotropy observed in the experimental result and evaluated in the numerical material test 
has been caused by the micro-scale plastic deformation of the polycrystalline aggregate. In 
addition to the macroscopic strength evaluation, it might be possible to examine the effects of the 
microscopic residual stresses/plastic strains and the texture development on the anisotropy in the 
macroscopic strength. 
 
 
3. Conclusion 
 
A method of evaluating the macroscopic yield strength of polycrystalline metals after cold-
working has been developed within the framework of nonlinear homogenization. Taking a cold-
Pilger mill rolling process as an example problem, we carried out the micro-macro decoupled 
analysis, in which the conventional crystal plasticity model is employed for the material behavior 
of each grain of a polycrystalline aggregate. The macroscopic deformation history is given to the 
aggregate and the cutting-out process is simulated to have a numerical specimen of the material 
after the rolling process. The macroscopic post-forming yield strength obtained by the micro-
macro decoupled analysis agrees well with the experimental one. It is therefore concluded that 
the proposed method can be applied for estimating the anisotropy of the yield strength of actual 
steel products subjected to various types of cold-working.  
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ABSTRACT

Ni-base superalloys size-dependent mechanical behaviour is investigated using the Cosserat
crystal plasticity framework, more preciselly using the back-stress related to the divergence of
the couple stress tensor model formulated by [2]. A two-phase laminate under single glide is
studied analytically to determine the role of each material parameter on the size effect predicted
by the model.

1 Introduction

Nickel-base superalloys are widely used in aero-engine industries, owing their good mechan-
ical properties at high temperatures. They inherit these properties from their characteristic
microstructure consisting of cuboidal γ′ precipitates surrounded by thin channels of γ matrix.
Plastic slip mainly occurs in the matrix. The presence of the precipitates constrains dislo-
cations to bow according to the Orowan bypass mechanism. This leads to a size-dependent
mechanical behaviour for the two-phase material. In one hand, classical crystal plasticity fails
to describe this kind of phenomenon because no length scale is included in the Cauchy con-
tinuum. In the other hand, simulations of discret dislocations dynamics, which can reproduce
the observed size effects are computationnally very intensive. It is why a great number of
generalized-continuum approaches have been proposed recently (see for instance [6, 5, 1] ).
The Cosserat continuum is one of these possiblities. It has already been employed to study size
effects in single-crystals and polycrystalline materials [3]. Following [2], we wish to develop
a more intrinsic formulation for the Cosserat single crystal plasticity and evaluating its ability
to describe γ/γ′ mechanical behaviour. We start to briefly recall the Cosserat continuum and
the Cosserat crystal plasticity framewok focusing on the consequences of the Schmid law with
a non-symmetric stress tensor. Then, the model is employed to solve analytically the case of a
two-phase laminate under glide loading.

2 Cosserat crystal plasticity

2.1 Cosserat continuum

The model is described here in the small perturbation framework. For more details on the
Cosserat contiuum, refer to [3]. In the theory, 3 degrees of freedom, represented by the rotation
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pseudo-vector φ, are added to the classical displacement ones. The deformation measures of
the Cosserat theory are the relative deformation tensor e

∼

and the torsion-curvature tensor κ
∼

:

e
∼

= u⊗∇+ ε
∼

.φ , κ
∼

= φ⊗∇ (1)

The stress tensor σ
∼

and the couple stress tensor m
∼

are associated to e
∼

and κ
∼

respectivelly. They
must satisfy the balance equations, which write in the static case :

div σ
∼

= 0 , div m
∼

+ 2
×
σ = 0 where ×

σ = −
1

2
ε
∼

: σ
∼

(2)

and boundary conditions which are not recalled here. It is imporant to note here that, in the
general case, tensors are not symmetric in the Cosserat framework.

Considering an elastic transformation, a generalized Hooke law can be written. In the isotropic
case, it reads :

σ
∼

= λ(tre
∼

e)1
∼

+ 2μe
∼

es + 2μce
∼

ea , m
∼

= α(trκ
∼

e)1
∼

+ 2βκ
∼

es + 2γκ
∼

ea (3)

λ and μ are the Lamé constants (unit MPa). μc is a coupling modulus that relates skew-
symmetric parts of the relative deformation tensor and stress tensor. The additional Cosserat
parameters α, β et γ (unit MPa.mm2) are intrinsic torsion and bending stiffnesses. For simplic-
ity, we adopt β = γ.

2.2 Plasticity and Schmid law

The relative deformation can be splitted into elastic and plastic part : e
∼

= e
∼

e + e
∼

p. We adopt a
crystal plasticity formulation for e

∼

p. The Schmid criterion expresses that plastic slip is activated
when the resolved shear stress on a given slip system reaches a critical value τc. Forest in [2]
have recently pointed out that the skew-symmetric part of the Schmid law can be seen as a back
stress related to the divergence of the couple stress tensor :

τ s = σ
∼

: P
∼

s = σ
∼

s : P
∼

ss + σ
∼

a : P
∼

sa = τ ssym − xs with xs = −
1

2
(divm

∼

).(ls × ns) (4)

Denoting γ̇s the increment of plastic slip and P
∼

s the orientation tensor for the slip system s, the
kinematic of plastic flow reads :

γ̇s = 〈
f s

k
〉nsign(τ s) with f s = |τ s| − τ sc = |τ ssym − xs| − τ sc = 0 (5)

3 Application to single slip in a two-phase laminate

The model is employed to study the case of a microstructure consisting of a perodic succession
of hard elastic and soft elasto-plastic layers subjected to single glide perpendicular to the layer
(see [4] for the microstructure). This case can be seen as an idealized γ/γ′ microstructure. It
has already been studied in the reference [4] and reexamined in [2]. Here we are loocking for
analytical expressions of the kinematic modulus and the macroscopic stress.
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3.1 Analytical resolution

Calcul steps are not detailled here, but only the main results are shown. The analytical resolu-
tion leads to the following expression for the rotation in the elastic phase :

φ+h = ah cosh

(
ωh

(
x−

s+ h

2

))
+ dh for s/2 < x < (s+ h)/2 (6)

(7)

with ω2h = 2μhμch

βh(μh+μch)
and a parabolic profile in the plastic phase : φs = asx

2 + ds.

Integration constants as, ds, ah and dh are determined thanks to continuity and periodicity
conditions. The resolution gives the following expression for the curvature of φ in the elasto-
plastic phase :

as =
−A

βs

(
Bl2 + Cl cotanh

(
ωh

l(1−fs)
2

)
+D

) (8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = γ̄ −
τc
2μh

(
fs + 2(1− fs) + fs

μh

μs

)

B =
f 3s
6βs

C =
f 2s
βhωh

D = fs
μs + μcs

μsμcs

−
4fs
μh

(
1 +

1− fs
fs

)
We obtain a linear kinematic hardening owing that xs = −βsas.

3.2 Effect of the material parameters on the size effect

The macroscopic stress writes : Σ = 〈σxy〉 = 〈σyx〉 = τc − 4βsas. This expression show
a size effect because as depends on the size of the microstructure l. Material coefficients for
both phases are chosen as following. They have the same coefficients for classical elasticity
E=90000MPa and ν=0.3. The β coefficient in the hard elastic phase is choosen very small,
βh = 10−7MPa.mm2, whereas βs = 10−1MPa.mm2 because plasticity processes at the micron
scale. Moreover, τc = 40MPa is a classical value for the resolved shear stress in the superalloys
γ phase at high temperature.

Fig. 1 shows the effect of key parameters on the size effect predicted by the model. The left part
of the figure shows that the βs do not play any role when the condition βh << βs is enforced.
We can also note from the right part of the figure that the critical resolved shear stress play
an important role on the size effect (Δσ0.2 representing the difference in σ0.2 between large
microstructures and very small ones). For the material parameters set chosen here, we have
potentially a 20MPa size effect which seems too law to describe γ/γ′ behaviour.
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Figure 1: Effect of the (a) βs coefficient and (b) critical resolved shear stress on the size effect

4 Conclusions

Analytical study of single glide in a two-phase laminate simulated with a Cosserat crystal plas-
ticity model shows a macroscopic behaviour which includes a size dependent effect. However,
this effect seems to be smaller than the one observed experimentally. Finite Elements simula-
tions with the same model on the 12 octahedral slip systems of the γ phase tend to confirm this
result. Further developpements of the Cosserat crystal plasticity framework are in progress to
be able to reproduce the size effect existing in Ni-based superalloys.
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ABSTRACT 

 
 

The overall behavior and the evolution of the local fields of IF steels, composed of grains with 
different sizes and crystallographic orientations, are simulated using an elastic-viscoplastic self-
consistent approach. To have a good statistics on grain size distributions and texture, more than 
16000 grains have been used. Computations and experimental measurements are performed on 
two different IF steels with different mean grain sizes, which allows us to investigate the 
different effects of grain size and texture. Numerical results display that the grain size effect is 
more important than the crystallographic texture effect on the yield stress, and, second, that grain 
size dispersion has an important influence on the mechanical properties and internal fields. 
 
 
1. Introduction 
 
The micro-macro transition theories were developed to model the plastic behavior of 
heterogeneous materials starting from the local behavior of their constituents mainly described 
by their crystallographic orientations. The interaction between grains is well described by 
Eshelby’s inclusion approaches, which essentially assumed a uniform grain size distribution, i.e. 
without grain size heterogeneities. Some recent works [1] have studied the effect of grain size 
dispersion rather than crystallographic heterogeneities. The present study shows that grain size 
effect is more important than texture effect. In this approach, the two aspects of heterogeneity, 
i.e. crystallographic orientations distribution as well as grain size dispersion, are taking into 
account simultaneously. Experimental textures and grain size distributions, obtained by EBSD, 
will be used. The local behavior is supposed elastic-viscoplastic with a reference shear stress 
depending on the individual grain size. The fluctuations of mechanical fields related to grain size 
dispersion are compared to the ones due to crystallographic orientations. 
 
2. Modeling 
 
2.1   Local grain size dependent behavior 
 
The single crystal behavior is supposed to be elastic-viscoplastic. For the sake of simplicity, 
small perturbations are assumed, so that the total strain rate splits into an elastic part and an 
inelastic (viscoplastic) part: 

σσmσsεεεε evpe :)x,(:R
s

(s)(s)
ij ������ � ������ � . ( 1 ) 
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In Eqn.(1), the elastic compliances s  are supposed isotropic, and are defined by the shear 
modulus μ and the elastic Poisson’s ratio υ. Furthermore, the secant viscoplastic compliances m 
depending of the local stress field �� are obtained using Eqn.(1) and the plastic flow rule on each 
slip system. In Eqn.(1), Rij(s) is the symmetric part of the Schmid orientation tensor of the slip 
system (s). Following Hutchinson [2], Molinari et al. [3], for each grain I, and on the slip system 
(s), the rate dependent flow rule is given by: 
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The power n is a parameter corresponding to the inverse of the slip rate sensitivity of the material 
and 0��  is a reference slip rate. In Eqn.(2), ij

s
ijR �� )((s) �  is the resolved shear stress on slip 

system (s). For each slip system (s), the reference shear stress (s)
c�  depends on the dislocation 

density )h(�  and on the grain size D (equal to grain diameter for the here considered spherical 
grains) like: 

(h)

h

(sh)(s)
c0

(s)
c a ������ 				��� �b

D
.  ( 3 ) 

 

where (s)
c0�  is the initial critical shear stress, b is the magnitude of the Burgers vector, �  (with 

0< � <1) and κ are material parameters. In Eqn.(3), )(sha  is the cristallographic part of the 
hardening matrix determined in the case of b.c.c. metals like IF steels, as defined by Franciosi 
[4]. Following Essmann and Mughraby [5], Hoc et al. [6], the variation of dislocation density on 
slip system (s) is supposed to depend on the dislocation density on system (s) (due to annihilation 
of dislocation dipoles) but also on other slip systems (creation of new dislocations due to forest 
obstacles) and on the slip rate on the slip system (s): 
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Through Eqn.(4), the mean free path of dislocations is limited by grain boundaries [6] so that it is 
initially on the order of the grain size D. 
 
2.2   Transitions from the Micro- to the Macro- Scales  
 
A self-consistent procedure using the “translated fields” technique was developed [7]. For an 
elastic-viscoplastic medium with homogeneous elastic moduli C and heterogeneous viscoplastic 
compliances, the interaction law between local stress rates σ�  and overall one Σ�  reads: 

� � � �vpvpBE : ::
e

εEASICΣσ ���� ����  ( 5 ) 
 

In Eqn.(5), SE is the elastic Eshelby tensor, vpvp εE �� � , and, 
eBA is the viscoplastic strain rate 

concentration tensor related to the homogenous viscoplastic moduli eB  of the effective medium: 
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In Eqn.(6), 
eB

lΓ  represents the local part of the modified Green tensor associated with eB .  
 
3. Materials 
 
Two different cold rolled and annealed IF steels are investigated. Their initial microstructures are 
determined by large EBSD measurements on the same window size (~16000 and 20000 grains), 
to have a good statistics in terms of grain size distributions and crystallographic orientation 
distribution function. The finest grain sized IF steel have a mean diameter of 8.75μm for a 
relative grain size dispersion ΔD/Dmean of 4.56 where ΔD=Dmax – Dmin is the absolute range of 
grain size. The largest grain sized IF steel have a mean diameter of 12.96μm and a relative 
dispersion ΔD/Dmean of 3.67. Their respective grain size distributions are reported on Fig. 1. 
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Figure 1. Grain size distribution for finest (right) and largest (left) grain sized IF steel. 

 
Different crystallographic textures obtained with these steels will be tested to compare both 
mean grain size and grain size dispersion effects associated to plastic anisotropy owing to the 
different present crystallographic components (mainly � and � fibers). 
 
4. Results 
 
Tensile tests at a prescribed strain rate of | Ė | = 8×10-3 s-1 are performed. They are also simulated 
using the micro-macro scale transition model until a macroscopic strain of 10%. Macroscopic 
(both experimental and simulated) are presented as well as the simulated evolution of the internal 
structure (local fields) during the tensile tests. 
The tensile stress/strain responses are reported on Fig. 2 for the two different IF steels. Materials 
parameters have been identified on the tensile test of the largest grain sized IF steel with its 
actual grain size dispersion. The global effect of grain size dispersion is on the order of the mean 
grain size effect (Fig. 2). 
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Small grain sized IF steel without grain size dispersion  

Figure 2. Experimental tensile responses for both steels and simulations with and without 
grain size distributions. 
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Local plastic strains and local stress components (in the tensile direction) are reported on Fig. 3 
for the largest grain sized IF steel at 2.5% and 10% of total strain. This figure shows two 
different cases, the first one is the real case, with grain size heterogeneity, the second one has no 
grain size heterogeneity (i.e. all the grains have the same diameter equal to the mean diameter). It 
is demonstrated that important fluctuations of internal fields are observed in both cases. But, due 
to grain to grain accommodation (see Eqn.(5)), the strain fluctuations are bigger (conversely the 
stress fluctuations are a bit lower) when grain size dispersion is accounted for. 

     
Figure 3. Local stress component in the tensile direction for the largest grain sized IF steel, 

with (left) and without (right) grain size dispersion. 
 
5. Conclusion 
 
Assuming grain size dependence on the critical shear stress and on the mean free path of 
dislocations, it is found that not only the mean grain size and/or texture play a role but also grain 
size dispersion has an impact on the overall behavior and on the evolution of the internal 
structure. 
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ABSTRACT 
 
In the last years the power of computers  has become large enough to solve Newton's equations 
of motion numerically for a large number of particles. This enables us to simulate the  plastic 
behavior of materials on the atomistic scale. Using the molecular dynamics method we 
specifically investigate the onset of plasticity under nanoindentation. In order to understand the 
atomistic plasticity and ductility of metals we address the question which microscopic properties 
are of importance for modeling plastic behavior. The microscopic properties - such as the 
cohesive energy, the elastic moduli, and the energy of point, line and planar defects - are 
determined through the interatomic potentials. Focusing on fcc materials, we investigate various 
pair and many-body potentials with respect to plasticity. It turns out that the dislocation 
nucleation under the indenter does not depend on the unstable stacking fault energy, which 
however governs the behavior of fully developed plasticity. Embryonic plasticity is dominated 
by crystal structure alone; it is well described even by simple pair potentials. 
 
1. Introduction 
 
On the atomistic scale materials are characterized in terms of cohesive energy, elastic moduli, 
and generalized stacking fault energy. These properties are modeled by potentials on the 
atomistic scale. It is known that  pair potentials are suitable for modeling isotropic amorphous 
systems near the equilibrium. For crystals the missing crystalline anisotropy leads to 
qualitatively wrong results in the elastic regime. Can this potential class be used for plasticity? 
This is particularly of interest, because the Cauchy pressure is zero and, therefore, the two shear 
modes are not disjoint for pair potentials. What additional information is included in the many-
body contributions contained in the embedding function? Is modeling plasticity using pair 
potentials meaningful? If so, what information can be drawn out of this? 
 
 
2. Molecular Dynamics Approach to Nanoindentation 
 
Using the velocity Verlet algorithm we solve Newton's equations of motion. We indent a relaxed 
fcc crystal (111,100,110) of 25nm side length by using a 8nm indenter with a constrained 
velocity v=10m/s.  Neglecting adhesion we model the indenter by using a purely repulsive 
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potential [1]. Our Lennard-Jones (LJ) potential is fitted to the lattice constant of copper (3.615 
Å) and the bulk modulus (134.4GPa). The Morse potential is additionally fitted to the cohesive 
energy (3.54eV) and the many-body potential is an EAM potential [2]. The generalized stacking 
fault energy is obtained using conjugate-gradient energy relaxation. 
 
 
2. Results 
 
In the elastic regime the hertzian theory holds in first order approximation. The load curves in 
Fig. 1 increase monotonically until  the yield point. Although only two elastic constants are 
covered by the pair potentials the deviation in the elastic stiffness is only about 10%. For the 
other orientations the deviation is similar. We note that the hertzian model itself assumes an 
isotropic material and therefore leads to different reduced elastic moduli than analytical 
calculations [3]. 

  
Figure 1. Force-depth curve for (111) Cu.  

 
 

Figure 2. Generalized stacking fault energy for the LJ, Morse and EAM potential.  
 
Plasticity is characterized through ductility. Similar to [4] we measure the ductility by the 
difference of unstable and stable stacking fault energy. In fig. 2 the generalized stacking fault 
energy for our potentials is shown. As expected, pair potentials underestimate the stable stacking 
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fault energy. The stable ground state (fcc / hcp) is not unique and we expect bigger stacking 
faults for pair potentials.  
Surprisingly, the early defect generation is nearly independent of the potential type. It does not 
depend on the stable stacking fault energy. The unstable stacking fault energy, however, 
influences the primary onset of plasticity [5]. The fully developed plasticity depends on the 
stable stacking fault energy: The size of the stacking faults is much bigger for the (therefore 
brittle) LJ potential. Comparing Morse and EAM potential the Morse potential leads to a similar 
size of defect structures; nevertheless, the total number of defects is bigger for the former one. 
This is visualized in figure 4 in term of the stacking fault concentration. 

 
 

 
Figure 4. Stacking fault concentration normalized to total number of particles in the 
simulation. 

 
 
5. Summary 
 
Elastic behavior is quantitatively reproduced within approximately 10%. As the onset of 
plasticity is described even better; we conclude that it is dominated by the crystalline structure.  
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ABSTRACT 
 
The strength of materials is highly sensitive to their structure. Atomic structure of a surface can 
significantly affect the strength and fracture mechanism of thin films. In this study, tensile 
simulations of silicon nanofilms by means of classical molecular dynamics (MD) and ab initio 
density functional theory (DFT) calculations are performed to investigate the effect of surface 
structure on the tensile strength. Ab initio DFT calculations of Si films with (100) surfaces reveal 
that the surface does not reduce much the strength owing to its flat structure. Ab initio and 
empirical tensile simulations of films with surfaces with various Miller indices demonstrate how 
the variety of surface structure influences the mechanical properties. Surfaces with relatively 
high Miller indices can decrease the tensile strength owing to surface step structures. It is found 
that subtle difference in the dimer structure around the step can significantly affect the tensile 
strength. The effect of the surface and step structure, e.g. termination by hydrogen and 
rebonded/non-rebonded step-edge, is also examined by extensive ab initio DFT calculations. 
Moreover, how the various step structures affect the deformation and fracture mechanism is 
examined with the instability mode analysis which is to solve the eigenvalue problem of the 
dynamical matrix of the atomic structure. 
 
[1] Y. Umeno, A. Kushima, T. Kitamura, P. Gumbsch, and J. Li, “Ab initio study of the surface 

properties and ideal strength of (100) silicon thin films”, Physical Review B, 72, 165431 
(2005). 
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ABSTRACT 

 

We present a hierarchical multiscale modeling analysis of the dynamics of surface 
adatoms above a dislocation network in a multilayered Si-Ge heterostructure. The analysis is 
carried out in two steps. First, a Green’s function-based multiscale modeling technique is applied 
to solve for the core structure and subsequently to derive the formation energy (i.e., enthalpy) 
and dipole tensor of a single Ge adatom on a bare Si(001) surface. The formation energy of their 
complexes (a few adatoms close to each other) is also examined. The Green’s function method is 
efficient because the materials heterogeneities and extensive nano-features (i.e., dimers) are 
taken care of in the reference Green’s function and the defects can then be locally handled. 
Second, the configurational force is employed to dictate the driving force on individual adatom 
migration and with that, the dynamics of a relatively large system of adatoms can be simulated. 
The configurational force acting on an individual adtaom is due to the elastic interaction with the 
buried dislocation network and with other adatoms. The formation energy obtained above is used 
as the energy barrier in part to determine the defect migration speed and to determine when two 
nearby adatoms would coalesce or nearby adatom and vacancy would recombine. The model is 
applicable to adatom densities from dilute to moderate. We show that the adatom migration 
pattern is significantly influenced by the presence of the buried dislocation network. They tend to 
gather first above the junctions of the dislocation network and then above the individual 
dislocations. These results agree well with the experimental observations. 
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ABSTRACT 
 
Dislocation Dynamics (DD) method is a link connecting dislocation motion on the atomistic 
scale directly to the length and time scales relevant for material performance in various 
engineering applications.  Over the last 15-20 years this connection has been established in 
principle but the DD method is yet to deliver on its promise as a tool for engineering 
calculations.  There are two primary difficulties standing in the way: (1) our insufficient 
understanding of atomistic mechanisms of dislocation behavior and (2) a very large 
computational cost of DD simulations on the engineering scales. Starting from 2000, ParaDiS 
project at LLNL has focused both on fidelity and computability of Dislocation Dynamics.  In this 
presentation, we will describe how we use atomistic simulations to parameterize DD models in 
order to make ParaDiS simulations more accurate.  We will also discuss the algorithms that 
enable us to run DD simulations efficiently on some of the world largest computational 
platforms. By enhancing the accuracy and computational efficiency of the DD method, ParaDiS 
team improves the quality of DD simulations, gains deeper physical insights into collective 
effects in dislocation motion and uses DD simulations for extracting constitutive models for 
large scale engineering calculations. At present, the ParaDiS code is employed by several 
research groups in Europe and the US who use the code as a development platform for further 
work on the DD methodology. To facilitate this development work, we created a ParaDiS 
user/developer community and made the source code freely available to others at 
http://paradis.stanford.edu .  
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ABSTRACT 
 
We present a study of 3D dislocation dynamics in BCC crystals based on discrete crystal 
elasticity. Ideas are borrowed from discrete differential calculus and algebraic geometry to 
construct a mechanics of discrete lattices. The notion of lattice complexes provides a convenient 
means of manipulating forms and fields defined over the crystal. Atomic interactions are 
accounted for via linearized embedded atom potentials thus allowing for the application of 
efficient fast Fourier transforms. Dislocations are treated within the theory as energy minimizing 
structures that lead to locally lattice-invariant but globally incompatible eigendeformations. The 
discrete nature of the theory automatically eliminates the need for core cutoffs. The quantization 
of slip to integer multiples of the Burgers vector along each slip system leads to a large integer 
optimization problem. We suggest a new method for solving this NP—hard optimization 
problem in the limit of dilute distributions of dislocations and also demonstrate the efficacy of 
our approach in simulating relatively large systems with fully atomistic resolution. Simulations 
with our model are shown to naturally produce strain-hardening, irreversibility and hysteresis, 
mediated by dislocation interactions. 
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ABSTRACT 
 
Size effects in plasticity are known a quite long time (e.g. N. J. Petch et al. 1953) and have 
become more attractive in recent time due to the ongoing miniaturization of components and 
systems in many modern technologies (e.g. MEMS). Thus, the understanding of the origin of 
these size effects and the related mechanisms are essential for a successful design at small length 
scales. In complex systems, mechanical loading usually induces stress and strain gradients, 
which may influence the mechanical properties and give rise to size effects. Therefore, in this 
work the influence of stress and strain gradients on the mechanical properties is studied in the 
micro-meter regime by means of 3D discrete dislocation dynamics simulations. The 
investigations are preformed on micron-sized bending beams. Beam thicknesses are varied 
between 0.5 and 3.0 μm for a fixed thickness to length ratio of 1:3. Two different boundary 
conditions are used: (i) one end of the beam was fixed and on the other end displacement is 
prescribed normal to the beam axis to mimic cantilever like bending, and (ii) a "pure" bending 
case where on both ends bending moments are applied. All other surfaces are traction free. The 
initial dislocation density is taken to be constant in all samples. A strong size effect is found in 
the bending resistance with a size-scaling exponent of n=-1. Thin beams (high gradients) showed 
a higher bending resistance compared to the thick beams (low gradients). The resulting 
dislocation structure features dislocation pile-ups at the neutral plane of the bending beams, 
which cause a back stress on the operating dislocation sources and thereby is responsible for the 
strong size effect. These pile-ups are analyzed by statistical methods and the resulting pile-up 
stresses are incorporated in a simple analytical model to explain the observed size effect. 
Furthermore, the back stress is analyzed by unloading the deformed beams, where a strong 
Bauschinger effect is observed. A good agreement between the model and experiments is found. 
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ABSTRACT 
 
Ductile failure of metals is normally controlled by the nucleation, growth and coalescence of 
voids, whose size is of the order of microns. Void growth is caused by the plastic flow around 
the void and there is compelling experimental evidence that size effects appear in metals when 
the dimensions of the specimen are in the range of μm [1]. In this paper, void growth in single 
crystals is analyzed within the framework of 2D discrete dislocations dynamics developed by 
Needleman and Van der Giessen [2], which has been extended to account for the effect of 
dislocations leaving the crystal through a free surface in the case of non-convex domains [3]. The 
simulations analyze the growth of a cylindrical void in a square single crystal of a FCC material. 
Voids with diameters in the range 0.1 to 0.5 μm are studied and the void growth rate as well as 
the resistance to plastic flow of the voided crystal are obtained for different loading conditions. 
 
1. Introduction 
 
The overall ductility in metals is mainly controlled by the void growth rate from the nucleation 
stage up to the coalescence of neighbor voids into a crack. Beginning with the pioneer of work of 
Rice and Tracey [4] which computed the shape change during deformation of a spherical void 
embedded in an infinite matrix of a rigid-plastic non-hardening material, many models and 
numerical simulations have been carried out to account for the effect of different factors on void 
growth (strain hardening of the matrix,  stress triaxiality, etc). 

Most of these analyses were carried out in the framework of classical continuum plasticity, and 
fail to predict any intrinsic effect of the void size on the growth rate. On the contrary, there is  
experimental evidence of the size effect on the resistance to plastic flow when the characteristic 
dimension of the problem (i.e. void diameter) is in the range of a few microns [1]  

Among the different simulation techniques that exist to account for the size effect in the  growth 
of a void in metallic materials, discrete dislocation dynamics (DDD) arises as an ideal tool to 
perform "virtual tests" of a crystal with a hole in order to simulate the size effect. This is the 
strategy that has been followed in this study. 

2. Numerical strategy 
 
The numerical simulation of the growth of a cylindrical void within a single crystal is carried out 
within the framework of DDD developed by Van der Giessen and Needleman [2]. This strategy 
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was extended by the authors to non-convex domains through the use of finite elements with 
embedded discontinuities [3]. 
 
The model considers an elastic, isotropic crystal with plane strain conditions containing slip 
systems made up by families of parallel slip planes with different orientations. Straight edge 
dislocations are represented by linear singularities perpendicular to the crystal plane with 
Burgers vector b. Dislocation dipoles can be nucleated at discrete points randomly distributed on 
the slip planes. Nucleation occurs when the resolved shear stress at the source τ exceeds a critical 
value τnuc  during a period of time tnuc.  
 
Once generated, dislocations slip in their respective glide planes, and the speed v of a dislocation 
i is given by a dragg relation (1) 
 vi=B  τ/b  (1) 

where τ stands for the resolved shear stress on the glide plane at the position of dislocation and B 
is the drag coefficient. Obstacles to dislocation motion can be considered and annihilation of 
opposite sign dislocations is also taken into account. Finally, the effect of a dislocation exiting 
the crystal is simulated by introducing a displacement jump of b/2 along the slip plane using the 
embedded discontinuity technology developed in [3]. 
 
The resolved shear stress at the position of the ith dislocation can be obtained by projecting the 
stress at the location of the dislocation, given by the superposition of two fields (2) 
 

σσσ �� �
j

j
~  (2) 

 
the first one stands for the sum of the stresses due to the rest of dislocations ( jσ~ ) and it is 
computed analytically from the expressions of the stress fields on an infinite continuum and the 
second, σ , includes the effect of the image forces induced by the crystal boundaries on the 
dislocations. This second term is computed by solving a linear elastic boundary problem using 
the finite element method with the appropriate boundary conditions and includes also the effect 
of the displacement jumps across the slip segments of the dislocations that have exited the crystal 
[3]. 
 
3. Results 
 
The model described is applied to simulate the mechanical response of square single crystals of 
variable dimensions LxL with a circular void at the center occupying 10% of the area (Fig. 1(a)). 
The crystal was made up of a linear elastic and isotropic solid, with elastic modulus E = 70 GPa 
and Poisson's ratio ν = 0.33 and contains two slip systems oriented at angles ±35.25 with respect 
to the main loading axis x2. This orientation corresponds to a planar model of a FCC crystal. The 
distance between the slip planes of each system was 100b. The modulus of the Burgers vector 
was 0.25 nm and the drag coefficient B = 10-4 Pa s. The critical resolved shear stress for 
nucleation was assigned randomly to the sources following a Gaussian distribution with an 
average value of 50 MPa, a standard deviation of 15 MPa, and a nucleation time of 0.01 μs. 
These magnitudes are similar to those used previously in several investigations [5]. 
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3.1 Effect of the triaxiality 
 
The aim of this section is to check the ability of the DD model to predict the influence of the 
triaxiality on the growth rate. For simplicity, it is assumed that dislocations can only abandon the 
crystal through the void surface (but not through the lateral surfaces of the crystal) and no 
obstacles are included along the slip planes. The crystal dimensions were given by L=2.5 μm  
and three loading cases (with increasing triaxiality) were applied: uniaxial tracion, uniaxial 
deformation and biaxial deformation. The source density was fixed to 150 μm-2 and the result for 
each loading case was obtained by averaging the results obtained with three different source 
arrangements. The crystal unit cell model used for the simulations together with the curves 
showing the evolution of the void size as a function of the deformation along x2 for the three 
loading cases are plotted on Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (a) Unit cell of the voided single crystal. (b) Evolution the void size as a function of the 
applied strain in direction x2 for three different load cases 
 
The results obtained with the DD simulations capture the dependence of the void growth rate 
(slope of curves in Fig. 1(b)) with the triaxiality and qualitatively reproduce the results of Rice 
and Tracey for spherical voids [4]: the void growth rate depends exponentially with the 
hydrostatic stress. 
 
3.1 Effect of the crystal size. 
 
In order to study the size effect in the growth of the voids, simulations of uniaxial traction in the 
x2 direction were carried out using the same square unit cell (Fig. 1(a)) but changing the cell size 
from L=0.5 μm to L=2.5 μm. Contrary to classical plasticity models, the DD simulations were 
able to predict the different response of crystals with different size without including any ad-hoc 
parameter. The predicted stress-strain curves and the evolution of the void size as a function of 
the stress in direction x2 are plotted on Fig. 2 for the different crystal sizes. 
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Figure 2. (a) Stress-strain curves. (b) Evolution of the void size as a function of the stress 
 
The classical size effect of the type “the smaller the stronger” is reproduced and both the yield 
stress and the hardening increase when crystal size is reduced (Fig. 2(a)). The effect of the void 
size in its void growth rate is shown in Fig. 2(b): it is found that bigger holes grow faster than the 
smaller ones. 
 
4. Conclusions 
 
The DDD model developed in [3] arises as a powerful tool to predict the size effect in the growth 
of voids inside a metal. The model reproduces the effect of the triaxiality in the growth rate: the 
higher the triaxialiaty the faster the void grows. The DDD simulations also capture the size effect 
in the growth: larger voids grow faster.  
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ABSTRACT 
 
 

Conventional crystal plasticity formulations fail to correctly predict dislocation pile-ups against 
e.g. hard particles because they cannot capture the effect of short-range dislocation interactions. 
We illustrate this limitation by studying an idealised pile-up of infinite edge dislocation walls. In 
the limit where all discreteness is averaged out, as is done in crystal plasticity, the pile-up 
collapses into a continuous tilt wall and its finite width is lost. As a consequence, size effects 
such as the Hall-Petch effect can no longer be captured. Based on an analysis of the short-range 
interactions in the same idealised pile-up, we derive a back-stress which can be used to repair the 
conventional theory so that it predicts pile-ups of a finite width. 
 
 
1. Introduction 
 
Conventional crystal plasticity theories fail to correctly predict the pile-up of dislocations against 
e.g. hard particles in a plastically deforming matrix. Instead of a gradually increasing slip 
gradient (and therefore dislocation density) towards the particle, they predict a jump in slip (i.e. a 
continuous array of super-dislocations) at the particle–matrix interface. As a consequence, the 
interaction of the stress fields within the particle and matrix is incorrectly described and size 
effects, such as the Hall–Petch effect, cannot be captured. A number of higher-order crystal 
plasticity theories have been proposed in recent years which repair this shortcoming, e.g. [1–3]. 
Most of these theories are phenomenological and the relationship between the higher-order terms 
introduced and the underlying dislocation interactions is not always very clear. 
 
In this contribution we aim to pinpoint the precise reasons for the limitations of the classical 
theory by studying an idealised pile-up configuration of infinite edge dislocation walls. A 
rigorous analysis, in which the dislocations are treated as discrete entities, serves as a reference. 
A transition towards a (crystalline) continuum is then made in a number of steps by subsequent 
averaging along and perpendicular to the slip direction. It is shown that the latter, i.e. averaging 
out the internal structure of an individual wall, eliminates the short-range dislocation interactions 
which govern the pile-up response. Based on the idealised configuration considered, a back-
stress term is derived which, when inserted in the conventional theory, allows it to predict finite-
size pile-ups and which turns out to be virtually identical to that proposed by Groma et al. [2] 
based on statistical arguments. 
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2. Discrete analysis 
 
The discrete dislocation configuration on which our analysis is based is shown in Fig 1. It 
consists of a series of dislocation walls in an infinite linear elastic medium. A single slip system 
is assumed, with discrete slip planes perpendicular to the  coordinate at a constant spacing . 
The dislocation lines are straight, infinitely long and perpendicular to the  plane. They are 
organised in planar walls which are perpendicular to the  direction. The wall at 

y
 

(indicated in red in Fig 1) is immobilised and the other walls pile-up against it under the 
influence of an externally applied shear stress . Here we limit ourselves to the case of edge 
dislocations with Burgers vector in the positive x direction; see Ref [4] for the screw dislocation 
case, as well as for details of the present analysis.  
 

 
Figure 1. Discrete dislocation configuration considered. 

 
The relevant stress component for dislocation motion is the shear stress . As the dislocations 
sit on the individual slip planes, this stress component should be evaluated on such a plane. 
Given the periodicity of the configuration, we can freely choose . The shear stress acting 
on this slip plane due to a single dislocation wall at 

y
 is given by 

 

 
 

where ,  are the elastic constants,  is the length of the Burgers vector and . 
This stress field decays rapidly (exponentially) with  and is of a short-range nature. The 
infinite walls considered here can indeed be shown not to generate a long-range stress field as 
they do not introduce a net incompatibility. 
An equilibrium state is reached if for each of the  mobile walls in the pile-up the applied stress 

 is balanced by the sum of the interaction stresses  exerted by all other dislocation walls. 
This condition results in a set of  nonlinear equations in terms of the  unknowns : 
 

1x2x3xnx 0 0x =

2h

h

h-

y

x

2h-
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These equations have been solved numerically [4]. The numerical solution for  and an 

external stress of  is shown in the diagram of Fig 2 by the circular markers. The 
vertical axis of the diagram shows the local dislocation wall density , which is defined at each 

wall position  as . Both axes have been made dimensionless 
using the slip plane spacing . The diagram clearly shows the typical pile-up response expected, 
with an increasing dislocation density (decreasing wall spacing) while approaching the barrier at 

. 

 
Figure 2. Discrete pile-up solution ( ) and distributions obtained as the discreteness of the 

walls is gradually removed. 
 
 
3. Averaging towards crystal plasticity 
 
We now examine the consequences of the transition from the above, fully discrete analysis to a 
continuum description in which the precise positions of the individual dislocations are no longer 
traced. First, the discreteness of the individual walls within the pile-up is gradually removed by 
increasing the number of walls while reducing the Burgers vector of the dislocations inversely 
proportionally. Results of this exercise are shown in Fig 2. They show that “smearing out” of the 
walls to – in the limit – a continuous distribution of walls leaves the shape of the pile-up 
essentially unchanged and is therefore allowed. 
If however, instead of the (horizontal) discreteness of the walls, we attempt to average out the 
(vertical) internal discreteness of the walls, a different conclusion is reached. Continuous walls 
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are obtained by taking the limit ,   while keeping constant the ratio . In this limit, 
the interaction stress  as defined above vanishes for all . This implies that individual 
walls can no longer “sense” each other and the discrete balance equations can no longer be 
satisfied for finite wall spacings.  As a consequence, the external stress  drives all walls into 
the barrier at , thus creating a super-dislocation wall there. Removing the discreteness of 
the individual slip systems thus results in a non-physical response because it removes the short-
range stress field associated with the wall. 
 
Conventional crystal plasticity theories are fully continuous and thus combine both limits as 
discussed above. As a result of their failure to account for the short-range stresses associated 
with individual dislocations, they also predict a pile-up of vanishing width. This shortcoming can 
be partially repaired by introducing the effect of short-range interactions via a back-stress. Such 
a back-stress term can be derived for the discrete dislocation configuration of Fig 1 by 
considering for a given wall the resultant of the interaction stresses  with its nearest 
neighbours. Expressing the wall distances in terms of the dislocation density  and second-order 

slip gradient 

p g

 and applying a first-order approximation then result in the following 
expression for the back-stress [5]: 
 

 
 
Interestingly, this expression virtually coincides with that derived by Groma et al. [2] based on 
statistical arguments. Inserting it in a crystal plasticity formulation results in pile-ups of finite 
width, as in the discrete analysis [2,4,5]. Depending on the wall spacing and applied stress, 
however, the predicted pile-up distribution does not always match the discrete solution very well. 
This may be due to the assumption at short-range interactions take place only between nearest 
neighbours, whereas in the discrete case more remote walls also contribute significantly [5]. A 
further extension of the theory may be necessary to include this effect. 
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ABSTRACT 

 
The results of modelling the process of plastic strain localization, accompanied by the 
intermittent flow (Portevin Le Chatelier effect) are presented. The phenomenon of self-
organization of the band structures at the mesolevel have been simulated on the basis of 
Relaxation Element Method (REM). The developed REM model for the plastic deformation 
localization operates on the principles of cellular automata. The influence of edge effects on the 
spatio-temporal patterns of band evolution have been analysed. 
 
1. Introduction 
  

The classical cellular automata satisfy the condition of homogenuity of the system: no one 
automaton could differ from another in any peculiarities. However, in practice, the calculation 
field is limited by finite number of the cells. As a result an edge effects take place. In order to 
escape this the so called periodical boundary conditions are introduced.  

On the other hand, when solving the problems of mechanics of deformed solid with 
application of analytical expressions of infinite plane, the technique of releasing of normal and 
tangential stresses is used, where there is no points of application of the external forces.  

In order to check the reply of the modelled specimen to the different constraints imposed on 
the edge of the specimen, the simulation of the localization of plastic deformation in polycrystals 
have been performed for the polycrystals under the uniaxial tensile loading for three cases: 

1. Without releasing of normal and tangential stress at the edges of the specimen 
2. With application of periodic boundary conditions. 
3. With accounting of normal and tangential stresses at the edges of the specimen.. 

 
2. Model 

 
In the present work the model of the plastic strain localization of the polycrystal under 

uni-axial tensile loading is considered. The developed models on the basis of REM operate on 
the principle of cellular automata. The calculation field is divided into a number of cells, playing 
the role of grain in polycrystall. A single crystallite involved into plastic deformation becomes 
the relaxation element (RE) – the defect of mesoscopic scale with its own field of internal 
stresses. A decrease in the elastic energy in the cell, where plastic deformation took place, is 
accompanied by an stress increase beyond the cell. In such a manner, an element of structure is 
able to increase discretely the degree of plastic deformation and as stress concentrator effects the 
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stress state of the nearest neighbors. The state of all structural elements changes simultaneously 
in a definite time interval. The involvement of the structural elements into plastic deformation is 
realized by the Mises-Tresca – criterion, when the shear stress achieves its critical value �cr . It 
was assumed, that the plastic deformation of crystallites occurs on the scheme of pure shear.  The 
distribution of shear stress in direction of 45� with respect to tensile axis [10] for a separate RE 
(the crystallite, undergone plastic deformation), is characterized by an expresion: 
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Here r - is the distance from the center of RE to the point with the coordinates (х, у), а - is the 
radius of RE, *� defines the value of stress relaxation of the pure shear inside the RE, �р and + 
- define the value of the gradients of plastic deformation. The higher +, the higher are the 
gradients. Shown in Fig. 1 are the distributions of the inhomogeneous stress fields of shear stress 
� (а) and shear strain �р (b) at +=6. 
 

 
Fig. 1. Distributions of stress � (а) and shear strain � р (b): +=6. 

 

The calculation field is represented in the form of a conglomerate of 10х50 points - centers 
of presumed crystallites. Each act of element involvement into plastic deformation matches a 
definite time interval which we defined from physical reasoning. A separate grain is assumed to 
be involved into plastic deformation in the time of order dt = 5х10-4s. 
During this time a level of external stress in the value takes place  

b)M(SE
)3Eb(M

0

2
0

l
adtvd

�
*�

�
�,� .                                            (2.2) 

Here M - is the rigidity of the testing machine v0 - is the velocity of the clamps of the testing 
machine in its unloaded state, a - is the radius of the crystallite, S, l0 and b - are the cross-section, 
length and the width of the working part of the specimen correspondingly. The parameter *� 

include in itself the mechanisms of plastic deformation, i.e. the ability of the material to plastic 
formchanging. The stress drop was taken to be equal to  *�-�.��max �-�/), where �0  � is the 
stress of plastic flow. The ��0 diagrams have been constructed by sum of the d� � increments. 
 

3. Results and conclusion 
Shown in Fig. 2а is the result without accounting of the edge effect. Limitations of the 

calculation field result in the reflection of the band of localized shear from the edge of the 
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specimen. Further the rapid transfer of plastic deformation along the formed bands of localized 
shear takes place. Due to this mechanism, the increase in the width of the bands takes place. At 
the later stage of simulations, the volumes before the formed bands are involved into plastic 
deformation. All the calculation field is filled by relaxation elements. The partial fragmentation 
of the material (д) takes place along some boundaries. After filling out of the whole space with 
relaxation elements the stage of high work-hardening comes.  

Another structure of the bands of localized shear is obtained in the case of the application of 
the periodic boundary conditions (Fig. 2b). Artificial shift of the relaxation element from one 
edge to another at the beginning results to the formation of the parallel bands of localized shear. 
Then these bands extended and the mesobands of conjugate direction are formed between them. 
Finally, unordered structure is formed. 

In the case of accounting for the edge effects following the technique, described in the 
previous paragraph, we obtain a rapid transfer of plastic deformation from one element into 
another on the mechanism of Lüders band (Fig. 2c). A macroscopic deformation for all three 
cases starts at the same stress and is accompanied by decreasing in stress (Fig. 3). After the 
whole volume is spanned by plastic deformation, the stage of sharp work-hardening is observed. 
In the intermediate interval the loading diagrams differ. In the case of not accounting of edge 
effects (curve 1) after the flow «tooth » the stage of weak work hardening comes. On average as 
the space is filling out with plastic deformation the flow stress increases. Account for the edge 
effect by releasing of the normal and tangential stresses at the edge of the specimen is not 
accompanied by essential work-hardening (Curve 3). Using of periodical boundary conditions 
results at the beginning to the weak work hardening. Transfer to the stage with high strong 
hardening occurs already before the whole volume will be embraced with plastic deformation 
(curve 2). 

 

       
a                                                  b                                                 c 

Fig. 2. Formation of the band structures without accounting of edge effects (a),  with 
accounting of the periodic boundary conditions (b) and with accounting of the releasing of 

normal and tangential stresses at the edges of the specimen (c). 
 

Comparisons with the real loading diagrams show, that the full coincidence is observed in the 
case of accounting of edge effects by releasing of normal and tangential stresses at the edges of 
the specimen. A sharp flow tooth and the flow plateau is observed at the initial stage of 
macroplastic deformation of many polycrystalline materials. The experience shows that the flow 
plateau is connected with the propagation of Lüders bands. The case of non-accounting of the 
edge effect qualitatively correctly reflects the behavior of polycrystalline materials, the surface 
of which from both sides is blocked by high-strength coatings. Than, really, plastic deformation 
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is developing on the mechanism of reflecting waves []. Accounting to the periodic boundary 
conditions they do not reflect any ordered mechanisms of the onset of macroplastic flow.  

The analyse performed show that when simulating the effect of plastic strain localization the 
account for periodic boundary conditions doesn’t result in the practically important results. In 
practice, when solving  definite tasks the necessity arises to refuse from some of the properties of 
the classical models of cellular automata.  
 

 
Fig. 3. Modelled diagrams of loading of the specimen without accounting of the edge effects (1), 

with accounting of periodical boundary conditions (2) with accounting of the releasing of the 
normal and tangential stresses at the edges of the specimen (3). 

 
The analysis shown that not accounting of free edges of the specimen results to the reflection of 
the bands from the edge of the specimen. Accounting of periodical boundary conditions results 
to the band structures. Releasing of the normal and tangential stresses from the edge of the 
boundary results to the band propagations of Lüders type. 
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ABSTRACT 
 

Solid-to-solid martensitic phase transformations are technologically important phenomena that 
result in unique macroscopic material properties such as the shape memory effect, 
ferromagnetism, and ferroelectric behavior. In shape memory alloys, such as CuAlNi and NiTi, 
the martensitic transformation can result from a change in temperature or the application of 
stress. In fact, both temperature-induced and stress-induced transformations are essential for the 
existence of shape memory behavior. An  Effective Interaction Potential model for bi-atomic 
shape memory alloys, based on a set of temperature-dependent atomic pair-potentials, is 
presented. The equilibrium solutions of the governing nonlinear equations are found, as functions 
of temperature and applied stress, using symmetry arguments and   Branch-Following and 
Bifurcation  techniques. To check if a given equilibrium path is observable, its stability against 
perturbations of arbitrary (with respect to inter-atomic distance) wavelengths is investigated. 
This requires continuum-level energy calculations as well as a lattice-level phonon spectra 
analysis. Our work predicts the existence of a hysteretic two-step temperature-induced proper 
martensitic transformation from the high-temperature B2 cubic austenite phase, to an 
intermediate αIrV orthorhombic phase, to a final B19 orthorhombic martensite phase. Stress-
induced transformation to the αIrV phase is predicted, at high temperatures, and characteristic 
properties such as tension-compression asymmetry are captured. Additionally, the transformation 
stress is found to increase with increasing temperature in agreement with experiment. The 
existence of both temperature- and stress-induced transformations indicates the possibility for 
shape memory behavior. Finally, the predicted transformation parameters show good 
correspondence with experimental values for the shape memory alloys CuAlNi and AuCd.  
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Micromechanical Modeling of Materials containing Intra-crystalline Particles 
 
 

Napo Bonfoh, Paul Lipinski 
 
 

Laboratoire de Fiabilité Mécanique (LFM) - Ecole Nationale d'Ingénieurs de Metz 
(ENIM), Ile du Saulcy, 57045 Metz, France. Metz 

(bonfoh@enim.fr, lipinski@enim.fr) 
 
 

ABSTRACT 
 

A two-level homogenization approach is developed for the micromechanical modeling of the 
elastoplastic behavior of polycrystals containing intracrystalline non-shearable particles. First, a 
micro-meso transition is employed to establish a constitutive relation for a single crystal 
containing particles. The behavior of an equivalent single crystal with particles is derived from 
the classical formulation of plasticity of the single crystal based on the Schmid's law and 
crystallographic gliding. Then, the transition to the macroscopic scale is performed with a self-
consistent scheme to determine the elastoplastic behavior of the macro homogeneous material. 
The obtained global behavior is characterized by a mixed anisotropic and kinematic hardening 
related to an evolution of inter- and intra-granular material microstructure. Results have been 
analyzed in light of second and third order internal stresses developed during the plastic flow. 
Especially, yield surfaces have been determined for various preloadings and particle volume 
fractions.  
 
Key words : B. Constitutive behavior, Crystal plasticity, Elastic-plastic material, Inhomogeneous 
material, Residual stress.  
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Selfconsistent Modelling of the Mechanical Response of Viscoplastic 
Polycrystals Deforming by Glide and Climb 
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ABSTRACT 
 

The viscoplastic selfconsistent (VPSC) code [1], originally conceived to predict the 
homogenized response of  incompressible viscoplastic polycrystals deforming by 
dislocation glide, has been extended to incorporate climb of dislocations as an additional 
deformation mechanism at the single crystal level. Within this extension, the same 
dislocation modes that accommodate deformation by glide, are now also able to do so by 
climb. The constitutive relation for climb involves a geometric tensor (similar to the 
Schmid tensor for glide) defined in terms of the directions of the Burgers and dislocation 
density vector, which also depends on the ratio between the densities of edge and screw 
dislocations and has a non-vanishing spherical component [2]. The latter makes the local 
and homogenized response compressible, therefore requiring a major revamping of the 
originally incompressible VPSC code. The critical stresses and viscosity exponents 
associated with both glide and climb and the interactions between systems have to be 
determined for specific materials and deformation conditions. We present parametric 
studies to assess the relative contribution to deformation and the coupling between the 
glide and climb mechanisms predicted by the model. 
 
[1] R.A. Lebensohn, and C.N. Tomé, " A selfconsistent approach for the simulation of 

plastic deformation and texture development of polycrystals: application to 
Zirconium alloys", Acta Materialia, 41, 2611 (1993). 

[2] C.S Hartley, "A method for linking thermally activated dislocation mechanisms of 
yielding with continuum plasticity theory", Philosophical Magazine, 83, 3783 (2003). 
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Large-Scale Simulation of Oscillating Metal-Nanorod:  
Application of the Hybrid Molecular-Dynamics/Coarse-Grained-Particle 

Approach 
 
 

Ryo Kobayashi,1,2 Takahide Nakamura,1,2 and Shuji Ogata1,2 
 

1Department of Scientific and Engineering Simulation, Graduate School of Engineering, 
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan 

2CREST, Japan Science and Technology Agency,  
4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan 

 
 

ABSTRACT 
 
A new concurrent hybridization method, called the scale-coupling virtual-layers method, which 
couples two different coarsening scales, is proposed. The method is simple and computationally 
efficient compared to the former methods. In the method, we introduce the virtual particles for 
both fine-scale and coarse-scale sub-systems. The virtual particles couple the two sub-systems, 
and also offer proper boundary conditions to both sub-systems. Reasonable behavior of the wave 
propagation in both directions is demonstrated. 
 
 
1. Introduction  
 
We have developed the coarse-grained particle (CGP) method to apply it for concurrent hybrid 
simulation with the MD [1,2] or the fluid dynamics. In the CGP method virtual particles are 
distributed in the system, and each particle represents to a group of neighbouring atoms through 
the weighting function. Since the inter-particle interactions are calculated through the 
constrained statistical average of the atomic Hamiltonian, the CGP method gives high accuracies 
for the elastic property. However the CGP method in its original formulation has some 
drawbacks such as O(N3) computational cost (N is number of atoms) for calculating inter-particle 
interactions and the displacement representation of the potential energy with the fixed reference. 
We have improved these drawbacks to make the CGP method applicable to simulation of a 
variety of large-scale and macroscopically deformed structures [2]. 
 
Imagine that a fine-scale calculation method is applied to a certain region in a coarse-scale 
system; e.g., the MD embedded in the CGP system. We require that waves produced at the MD 
region should propagate across the boundary to the peripheral, CGP region. However, when two 
calculation methods with different length-scales meet each other, spurious wave-reflection 
usually occurs at the boundary relating to the difference of the minimum wavelengths. The 
bridging scale method [3] and the bridging domain method [4] have been proposed to couple 
different scales with suppressed spurious reflection. However both methods need a lot of extra 
computational cost: considering the time history or solving simultaneous equations to determine 
the Lagrange multipliers. 
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Motivated by these, in this paper, we propose a simple and efficient scale-coupling method to 
connect the MD and CGP methods and also to connect different coarse-graining scales in the 
CGP method.  
 
 
2. A Novel Scale-Coupling Method  
 
Figure 1 shows the particle configuration in a one-dimensional system to explain our scale-
coupling virtual-layers method (SCVLM). The system is composed of two sub-systems: the fine-
scale sub-system depicted at the top in Fig. 1 is to describe the fine-scale area f1 ; the coarse-
scale sub-system at the bottom in Fig. 1, the coarse-scale area c1 . Each sub-system has the 
virtual particles located in the other area: that is, the “fine” virtual-particles in c1  (the open 
circles in Fig. 1) and the “coarse” virtual-particles in f1  (the open squares in Fig. 1). In the 
following, the uppercase and lowercase letters correspond to the coarse- and fine-scale systems, 
respectively. The displacements of the particles at one time-step after, depicted in Fig. 1, are 
obtained through the following three steps: 
 
(i) Update 2 3fu , 2 3v

cu , and 2 3cU  using the inter-particle interaction and the momenta at present in 
each scale.  
(ii) In the coarse-scale sub-system, the displacements of the coarse virtual-particles in f1  are 
determined by coarse-graining those of the fine particles with a weighting matrix f: 

�4
i iIiI ufU ,, f

v
f  .         (1) 

Note that no information about the momenta is necessary for the coarse virtual-particles. 
(iii) In the fine-scale sub-system, the displacements and momenta of the fine virtual-particles in 

 are corrected by interpolating those of the coarse particles with an interpolation matrix N:
 � �� ���4 �

I j jIjIiIii ufUNuu v
cc,

v
c,

v
c, ,        (2) 

� �� ���4 �
I j jIjIiIii mpfMPNmpmp //// ,

v
cc,

v
c,

v
c,  ��      (3)

 
 
We define the weighting matrix as � � NNNf 1�

� + ; therefore 1��fN . Hence the average of {
v
c,iu } holds the equality Ii iIi Uuf c,

v
c, �� , while � ��

I IiIi UNu c,
v
c,  in general. It means that the 

fine virtual-particles may contain a short-wavelength wave, which cannot be described with the 
interpolation function, N.  The scalar parameter  in Eqn. (3) changes gradually from 1 at the 
left-end of the virtual layers in the fine-scale, to 0 at the right-end of the virtual layers, as shown 
in Fig. 1. Therefore such a short-wavelength wave is suppressed fully ( 0�� ) at the right-end of 
the virtual layers. We expect that no substantial reflection wave be produced. 
 
We now explain how a wave propagates through the coarse-fine boundary, with the algorithm 
mentioned above.  Firstly, consider the case in which a wave travels from the right (the coarse-
scale) to the left (the fine-scale).  The oscillation of 2 3cU  in c1  is transferred to that of 2 3v

cu  
following Eqn. (2), ignoring any reaction to 2 3cU . Then the wave travels in the fine-scale sub-
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system to evolve 2 3fu . The 2 3fu  is transferred to 2 3v
fU  following Eqn. (1). The 2 3v

fU  offers the 
“non-reflecting” boundary condition for the wave in the coarse-scale sub-system. By this way, no 
reflection of the wave is expected at the boundary. Secondary, consider the case in which a wave 
travels from the left (the fine-scale) to the right (the coarse-scale). The 2 3fu  in the fine-scale is 
transferred to 2 3v

fU  following Eqn. (1). Then the wave of 2 3v
fU  travels toward 2 3cU  in c1 . 

While the wave of 2 3v
cu  in the fine-scale sub-system propagates in the virtual particles. A part of 

2 3v
cu  described as � �

f c IiIUN ,  in Eqn. (2), which uses the coarse-scale information, keeps 
travelling in the virtual particles and offers the non-reflecting boundary condition for such a 
long-wavelength wave-component of 2 3fu , while the remaining part � �� ��� �

I j jIjiIi ufNu v
c

v
c, ,  

in Eqn. (2) relating to a short-wavelength wave-component is damped with  as shown in Eqn. 
(3). 
 

 
 
Figure 1. Schematic illustration of the scale-coupling virtual-layers method. Black circles and 
squares indicate real particles; while, open circles and squares, virtual particles. 
 
 
3. Example of Wave Propagation  
 
We apply the SCVLM to a simple one-dimensional spring-beads model. Here we set the spring 
constant, mass, and inter-particle distance of the fine-scale sub-system to 1. The coarse particles 
are prepared so that a coarse particle represents four fine particles. The properties of the coarse 
particles such as the spring constants and masses are obtained by the CGP procedure using the 
weighting matrix, f  [1,2].  
 

 
Figure 2. A wave-packet passes through the boundary from the coarse-scale area to the fine-scale 
area. (Left) at the initial, (right) at the final. 
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Firstly consider the case in which a wave-packet passes through the boundary from the coarse-
scale area to the fine-scale area. Figure 2 shows the simulation result. The wave-packet passes 
through the boundary with little refection. The SCVLM works quite well. 
 
Second we consider the case in which a wave-packet passes through the boundary from the fine-
scale area to the coarse-scale area. As an initial condition, we set a wave-packet by combining 
short and long wavelength waves, in the fine-scale area. The short wavelength wave-component 
cannot propagate in the coarse-scale area since the wavelength is too short. Figure 3 shows the 
simulation result. The long wavelength wave-component passes through the boundary, as 
expected. On the other hand, a slight reflection of the short wavelength is observed. Considering 
that the present method does not use the time history to evolve the wavelength wave, the wave 
propagation behavior is satisfactory.  
 

 
Figure 3. A wave-packet propagates through the boundary from the fine-scale area to the coarse-
scale area. (Left) at the initial, (right) at the final. 
 
The SCVLM has advantages as compared with the former methods: The computation uses 
instantaneous and local data only. Its implementation is simple with little computation cost. 
Extension to 2D and 3D systems, such as oscillating nanorods, are straightforward, which will be 
demonstrated in the conference. 
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ABSTRACT 
 
 

A method for controlling the thermal boundary conditions of non-equilibrium molecular 
dynamics (NEMD) simulations by concurrent coupling with a continuum far field region is 
presented. The method is simple to implement into a conventional molecular dynamics  (MD) 
code and independent of the atomistic model employed. It regulates the temperature in a 
thermostatted boundary region by feedback control to achieve the desired temperature at the 
edge of an inner region where the true atomistic dynamics are retained. This is necessary to 
avoid intrinsic boundary effects in NEMD simulations. A stadium damping thermostat is 
employed to avoid the adverse reflection of phonons that occurs at an MD interface. The 
effectiveness of the algorithm is demonstrated for the example of transient heat flow down a 
three-dimensional atomistic composite rod. 
 
 
1. Steady state nonequilibrium molecular dynamics 
 
Concurrent multiscale simulation methods have been proposed for extending the length and time 
scale of atomistic simulations by replacing unnecessary degrees-of-freedom by a continuum 
representation. Such methods have mainly been developed at zero temperature [1], although 
there are some notable achievements in extending this to finite temperature (e.g. [2]). These have 
predominantly focused on isothermal models. Here a method is proposed for extending this type 
of approach to inhomogeneous thermal problems. In order to so this, it is firstly necessary to 
obtain accurate control of the thermal boundary conditions of an MD simulation. Here we restrict 
our interest to ballistic heat transport in insulators via phonon interaction (i.e. conduction by 
electrons is neglected) in the classical regime (i.e. above the Debye temperature). The temporal 
evolution of a thermostatted particle of mass im  at a position ix  is described by the usual 
equations of motion 

fx
x

x RmVm ii
i

ii ��
5
5

�� ��� �  (1.1) 

where �  is a damping coefficient, 11 ""� R  is a uniformly distributed random variable and 

t
Tm

f ci
n *

�
�6

 is the magnitude of each component (n=x, y or z) of the stochastic force f  for a 
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target temperature cT  and a time step t* . The stochastic Langevin thermostat is active in regions 
where�  is non-zero. In regions where �  is zero the true (unthermostatted) dynamics are 
retained. The local Langevin thermostat is advantageous for NEMD simulations as it allows for 
the (average) temperature of each atom to be specified at the boundaries. Local thermostats are 
beneficial for rapidly changing transient boundary conditions as they respond quickly to local 
changes in temperature. The results of imposing a temperature gradient along the length of an 
MD simulation are shown in Fig. 1a. The temperature gradient is much less than expected. This 
is due to phonon scattering at the boundaries. Heat is transported in crystals by the correlated 
motion of atoms. Thermostats disrupt the motion and reduce the thermal conductivity in their 
vicinity. Such Kapitza effects occur at all interfaces, although it is undesirable here as the 
interface is artificial.  
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Figure 1. (a) Steady state temperature profile along a 1D 100 atom Lennard-Jones chain 
(parameters for argon) with fixed ends. The two end atoms are thermostatted at 50K and 
40K respectively using a stochastic Langevin thermostat. The large deviation from Fourier’s 
law (dashed line) arises from the discontinuity in the temperature profile at each end due to 
phonon scattering. (b) Precise imposition of a steady state temperature gradient along a 
three-dimensional 8x8x100 atom rod by feedback control of the thermal boundary 
conditions using stadium damping thermostats. The target temperatures in the left and right 
thermostatted regions (TRs) are regulated at LT  and RT  by (1.2) such that the prescribed 
temperatures at the edges of the true dynamics region (TDR) (at j=0 and j=50) are 
maintained at 0T =50K and MT =40K. A buffer region (BR) of 10 atomic slices is introduced 
between the TRs and the central TDR to avoid Kapitza effects at the TR/BR interfaces.  

A simple pragmatic approach to the artificial Kapitza effect has been proposed by Jolley and Gill 
[3]. This does not aim to avoid the Kapitza effect, but uses standard thermostats to impose the 
precise temperature gradient that is desired upon a thermostatted region of the system through a 
simple control loop. Typical time-averaged temperature profiles for a stadium damping Langevin 
thermostat [2] are shown for an 8x8x100 Lennard-Jones solid in Fig. 1b. The aim is to maintain 
different prescribed temperatures at the boundaries of an (unthermostatted) true dynamics region 
(TDR) in the centre of the sample. These are defined as 0T =50K and MT =40K on the left and 
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righthand ends respectively, where M=50 is the number of atomic planes in the TDR. The target 
temperatures of the thermostatted regions (TR) at the left and righthand ends, LT  and RT  are not 
known. They are determined during the simulation via a very simple feedback control algorithm  

)( 00 TTTQ LT ���                    )( MMRT TTTQ ���          (1.2) 

where 0T  and MT  are the actual measured temperatures at the TDR boundaries and the 
constant TQ  determines the responsiveness of the thermostat. There is a buffer region (BR) 
between the TRs and the TDR to allow for the nonlinear Kapitza effect.  

 
 
2. A coupled atomistic/continuum model for transient heat flow 
 
The TDR is now coupled to a continuum region. Previously the thermostatted regions (TRs) 
were used to regulate the temperature at the boundary of the true dynamics region (TDR). The 
TDR is the only region of interest for the numerical experimentalist. It is simple to couple the 
TDR to a quasi-static finite difference region evolving under Fourier’s law. Now the 
temperatures at the boundaries of the TDR are not known. They are determined naturally during 
the simulation from the energy coupling between the atomistic and continuum regions. The 
temperatures of the TRs are now regulated to ensure conservation of thermal energy such that 

dtqqTQ
t

LLLq )(
0
6 ���             dtqqTQ

t

RRRq )(
0
6 ���          (2.1) 

where LT  and RT  are the thermostat target temperatures (as in (1.2)), qQ  is a constant which 

determines the responsiveness of the thermostats, and qq �  is the difference between the heat 
fluxes in the continuum and the (spatially-averaged) atomistic system along a shared boundary at 
the centre of the BR. The integrals ensure that heat is conserved exactly over time. As the 
thermostats are slightly removed from the TDR boundary there is a small delay in the response 
of the system to changes in the TDR boundary conditions. However, by ensuring the 
conservation of thermal energy at the mid-point between the TR and the TDR boundary, this 
delay can be minimized and rendered unnoticeable, even under extremely rapid thermal changes. 
An example of a fully transient coupled simulation is shown in Fig. 2. The temperature in the 
atomistic TRs and BRs is not shown as these exist purely for the purposes of controlling the 
boundary conditions of the TDR. The righthand (continuum) temperature of the system is fixed 
at 20K and the lefthand (continuum) temperature is cycled sinusoidally between 20K and 40K at 
a frequency of 0.9GHz. The coupling between the atomistic and continuum models is excellent 
with no observable jump in the temperature profile at the interface between them. 12ns of time 
was simulated in total, of which the first 4ns is shown in Fig. 2a. 
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Figure 2. (a) The variation in temperature at three equally spaced points within the TDR 
region with time for a coupled atomistic/continuum model (solid lines). The full continuum 
solution and the imposed lefthand (continuum) temperature are also shown (dashed lines). 
(b) The temperature profile of the atomistic/continuum model (solid lines) and full FD 
continuum solution (dashed) are plotted at five consecutive times. Each graph is an average 
of 10000 timesteps (~0.2ns) to reduce thermal noise. The atomistic and continuum models 
are in excellent agreement during the whole simulation. 
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ABSTRACT 
 
Breaking tensile test of ductile materials starts with the formation, in the test material central 
area, of a choking followed by the nucleation of several cavitites at nanoscopic scale. Nanovoids 
growth and coalescence give rise to a crack which propagates towards the surface in the 
perpendicular direction to the applied charge. This work is focused on the study of the evolution 
of these nanovoids for face centered cubic (fcc) crystals. The Quasicontinuum (QC) method [1] 
has been performed to carry out such an analysis. This method is framed inside the multiscale 
modelling techniques and it is based on a mixed approximation of the system, continuum and 
atomistic. QC is a method for systematically coarse-graining lattice models at finite temperature 
[2]. In the atomistic area, different potentials have been considered for the interaction between 
atoms. Simulations with our model are presented for uniform dilatation loading mode.   
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ABSTRACT 
 
 
As an example of closely coupled multiscale modeling we have explored the coupling of 
a region treated atomistically with molecular dynamics (MD) and a surrounding region 
treated as finite element (FE). Comparison will be made between conventional 
handshaking schemes and our proposed absorbing boundary conditions. Further formal 
development of a correlation function based multiscale coupling will be presented. The 
relationship between this correlation based approach and the atomic density functional 
and phase field crystal approaches will be discussed. Acknowledgments: This research 
was sponsored by the Laboratory Directed Research and Development Program of Oak 
Ridge National Laboratory and by the Division of Materials Sciences and Engineering, 
Office of Basic Energy Science, U. S. Department of Energy under Contract No. DE-
AC05-00OR22725 managed by UT-Battelle LLC for the Department of Energy and by 
the University of Tennessee Computational Sciences Initiative.  
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ABSTRACT 

 
 
A key challenge in nearly all of the dynamically-coupled multiscale modeling methods is 
to interface the atomistic model with continuum theory. This work aims to find the field 
representation of fundamental physical quantities and their time evolution laws at atomic 
length/time scales, and to demonstrate the existence of a field representation of classical 
atomic-level N-body dynamics for general crystalline materials. This will then lead to the 
formulation of a new continuum theory of mechanics that is equivalent to a fully 
atomistic model at the atomic scale and can be reduced to classical continuum mechanics 
at the macroscopic scale.  It will enable concurrent atomic and continuum simulation of 
materials within a single theoretical framework, thus completely eliminating the 
numerical interface between atomistic and continuum descriptions in multiscale modeling. 
Application of the formulated field theory in modeling and simulation of dislocation, 
phase transformation, fracture and failure of single and polycrystalline materials will be 
presented.  
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ABSTRACT 
 
 
We investigate the performance of new multiscale methods involving generalized finite element 
techniques that are coupled with a region of fully resolved molecular dynamics.  Using the zero-
temperature-dynamics assumption (atoms in a frozen configuration until disturbed by an 
impulse), the error propagation through the atomistic-continuum interface is studied using 
varying qualities of interpolation in the continuum region in the sense of meshfree methods.  We 
specifically examine the differences among Bubnov-Galerkin, partition of unity, and moving 
least squares finite element methods in the continuum part of the domain.  Through numerical 
experiments and theoretical simplifications for a one-dimensional chain of atoms, we 
demonstrate that the assumptions of the generalized continuum region directly influence the 
quality of the multiscale interface.  With these findings, we propose a new stability criterion for 
bounded error of phonons that travel through the interface. 
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ABSTRACT 
 
 
This presentation investigates model reduction techniques that are based on a nonlocal quasi-
continuum-like approach. These techniques reduce a large optimization problem to either a 
system of nonlinear equations or another optimization problem that are expressed in a smaller 
number of degrees of freedom. The reduction is based on the observation that many of the 
components of the solution of the original optimization problem are well approximated by 
certain interpolation operators with respect to a restricted set of representative components. 
Under certain assumptions, the “optimize and interpolate” and the “interpolate and optimize” 
approaches result in a regular nonlinear equation and an optimization problem whose solutions 
are close to the solution of the original problem, respectively. The validity of these assumptions 
is investigated by using examples from potential-based and electronic structure-based 
calculations in Materials Science models. A methodology is presented for using quasi-
continuum-like model reduction for real-space DFT computations in the absence of periodic 
boundary conditions. The methodology is illustrated using a basic Thomas–Fermi–Dirac case 
study.  
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ABSTRACT 
 
 
The work reported here is part of a ‘multiscale characterization’ study of heterogeneous 
deformation patterns in metals. A copper single crystal was oriented for single slip in the 
(111)[101] slip system and tested to ~10% strain in roughly uniaxial compression. The 
macroscopic strain field was monitored during the test by optical ‘image correlation’. The 
macroscopic strain developed in an inhomogeneous pattern of broad, crossed shear bands. One, 
the primary band, lay parallel to (111). The second, the ‘conjugate’ band, was oriented 
perpendicular to (111) with an overall habit that contains no common slip plane of the fcc 
crystal. The mesoscopic deformation pattern was explored with selected area diffraction, using a 
focused synchrotron radiation. The mesoscopic defect structure was concentrated in broad, 
somewhat irregular primary bands that lay nominally parallel to (111) in an almost periodic 
distribution with a period of about 30 μm. These primary bands were dominant even in the 
region of conjugate strain. There were also broad conjugate defect bands, almost precisely 
perpendicular to the primary bands, that tended to bridge primary bands and terminate at them. 
The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated 
with the primary shear bands; interband stresses were small. The maximum resolved shear 
stresses within the primary bands were oriented out of the plane of the bands, and, hence, could 
not recover the dislocation structure in the bands. The results are compared to the mesoscopic 
defect patterns found in Cu in etch pit studies done some decades ago, which also revealed a 
mesoscopic dislocation structure made up of orthogonal bands. 
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ABSTRACT 

 
Phenomenological Mesoscopic Field Dislocation Mechanics (PMFDM) is a recently developed 
continuum model for studying plasticity at the mesoscale. It is a combination of (a) Field 
Dislocation Mechanics– as a model for the plastic flow of polar, mobile dislocation density and 
long-range internal stress, and (b) gradient polycrystal plasticity which is used as a model for 
plastic flow of statistical dislocation distributions and strength arising from short-range 
interactions. The mesoscopic model is derived from Field Dislocation Mechanics through an 
elementary space-time averaging of its equations. It has been shown to be successful in 
predicting benchmark problems of micron scale plasticity, such as size effects in work hardening 
and initial yield, Bauschinger effect, modeling of a Frank Read source and spatial inhomogeneity 
in a homogeneous material under boundary conditions corresponding to a homogeneous 
deformation. This talk will demonstrate the effect of surface passivation and film thickness on 
the mechanical response of polycrystalline thin films under plane strain tension. Stronger stress-
strain response with decreasing film thickness, increase in Bauschinger effect with subsequent 
cycles of loading and unloading, and stiffening of mechanical response due to a passivation layer 
at fixed size are demonstrated. These results are in qualitative agreement with experimental 
observations. The unloading behavior of thin films of varying thickness is also investigated at 
different strain levels. Time-permitting, the implementation and some preliminary results from 
the finite deformation counterpart of the theory will also be demonstrated. 
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ABSTRACT 
 

In the present study, a new micromechanical approach is developed to derive the mechanical 
fields (stress, distortion, lattice curvature, elastic energy) arising from the presence of an inelastic 
strain field representing a typical internal "microstructure". This "microstructure" is due to the 
formation of discrete (spatial-temporal) intra-granular plastic slip heterogeneities characterized 
by at least two internal lengths: the first one is the individual grain size, and, the second one is 
the spatial distance between active slip lines associated with inhomogeneous plastic slip in the 
interior of grains. Intra-granular plastic slip heterogeneities are modeled using periodic 
distributions of circular glide dislocation loops for a grain embedded in an infinite elastic matrix. 
In contrast with the mean field approach based on the Eshelby formalism, this model is able to 
capture different behaviors between near grain boundary regions and grain interiors. These 
results are confirmed by EBSD measurements carried out with orientation imaging mapping 
(OIM) on deformed polycrystals. 
 
1. Introduction 
 
During the last decades, models based on scale transition techniques gain a growing attention in 
the objective to predict the mechanical behavior of metals and alloys. These models are 
traditionally based on a mean-field approximation which makes use for grain description of the 
classic Eshelby’s formalism of the homogeneous ellipsoidal inclusion. Therefore, the intra-
granular plastic slip heterogeneities are not considered in such approaches. However, recent 
studies (like discrete dislocation dynamics simulations [1,2]) showed that it appears fundamental 
to account for the self-organization of dislocations within grains in order to predict grain-size 
effects on the mechanical behavior of polycrystals. In this work, we consider an inclusion/matrix 
problem where plastic strain is no more assumed homogeneous as in the classic Eshelby’s 
framework but is given as a discrete distribution of parallel glide dislocation loops constrained at 
the grain boundary. Such configuration is a first approximation in order to describe plastic slip 
heterogeneities and the formation of slip line patterns during the early stages of plastic 
deformation [3]. In a recent contribution [4], it was demonstrated that such approach captured 
other contributions near grain boundaries on the internal stresses as well as a natural grain size 
effect on the internal elastic energy than the ones provided by the conventional methods based on 
the Eshelby’s solution. Here, we compute in addition the elastic rotation fields in order to 
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perform direct comparisons with experimental measurements of local lattice rotation fields 
obtained by orientation imaging mapping (OIM) on Ni polycrystals during tensile tests. 
 
2. Inclusion problem with inhomogeneous plastic strain 
 
A spherical grain of radius R embedded in an infinite elastic matrix V is considered (Fig. 1). 
Field equations are given by the stress equilibrium condition for the symmetric Cauchy stress 
tensor �� and the compatibility relation for total distortion + (or total strain 0 which is the 
symmetric part of +). In the small perturbation hypothesis, +-is the sum of elastic +e and plastic 
+* distortions. Field equations lead to solve the so-called Navier type partial differential 
equation: 

0)()( *
,, �� xx jlkijklljkijkl CuC +                                                                                               (1) 

where u is the displacement field and C is the elastic moduli tensor.  
 

 
Fig. 1. (a) Spherical grain with radius R and periodic dislocation loops. (b) Intragranular 

misorientation mapping obtained by the model. (R = 10μm and h = 2.86μm) The misorientations 
are defined with respect to a reference point located in the grain center. 

 
The present study focuses on the peculiar case of a periodic distribution of circular glide 
dislocation loops lying in successive parallel planes along the grain (Fig. 1). Successive loops are 
spaced by a periodic distance h. All loops have same Burgers vector b and same unit normal n. 
The loops are constrained by the spherical grain boundary. An odd number (2N+1) of circular 
loops is considered so that the only non-zero component of +* is: 
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where a(n) = (R2 - (nh)2)0.5 is the radius of the loop at altitude z = nh.  
 
In order to determine the whole mechanical fields and elastic energy, a Fourier Transforms 
method is adopted. Assuming isotropic elasticity, and, keeping in mind that the plastic field due 
to dislocations is incompressible (Eqn. (2)), the transformation of Eqn. (1) in the Fourier space 
gives the displacement field solution: 
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:n Eqn. (3), 88 is the Fourier vector and the superscript ~ denotes the Fourier Transform. +(x), 
0(x) as well as the rotation field ;(x) (skew-symmetric part of +) can then be computed either 
from the displacement in the real space or in the Fourier space. Then, the Euler angles evolution 
arising from the presence of dislocation loops can be calculated for each point of the space. As 
seen in Fig. 1b, lattice rotations due to a distribution of periodic loops are almost uniform in a 
region surrounding the centre of the grain and highly inhomogeneous in the region close to the 
grain boundary. The obtained results are quite interesting because direct comparison with OIM 
measurements is possible. 
 
3. Experimental measurements and comparisons with the theoretical model 
 
From experimental studies of deformed polycrystals, plastic strain within grains is known to be 
strongly heterogeneous and intermittent. As a consequence of the collective motion of 
dislocations, sample surfaces (which can be observed by optical microscopy or atomic force 
microscope) are indeed characterized by the presence of slip lines and slip bands (as slip traces) 
([3,5]). These slip lines can be observed by light microscopy (with a Nomarski contrast [3]) or 
atomic force microscopy [6]. They correspond to the emergence of many dislocation loops on a 
slip plane. Several slip lines can then clustered to form a slip band as described by Neuhäuser 
[3]. For the present study, a particular grain deforming in single slip in a polycrystalline pure 
nickel sample (with 1-3% strain) is considered (Fig. 2a). Statistical studies on slip bands spacing 
are performed. 
 

 
Fig. 2: (a) Optical micrograph (Normarski contrast) : Deformation microstructure of a a 
polycrystalline pure nickel sample with 1% strain. (b) OIM measurement: Intragranular 

misorientation in relation to a reference point in the grain center after 1% strain. 
 
Intragranular misorientations are measured by orientation imaging mapping (OIM). Fig. 2(b) 
shows the misorientations with respect to a reference point taken in the grain center. A layer in 
the region closed to the grain boundary is observed with a strong gradient of lattice 
misorientation compared to the centre of the grain.  
In order to compare both approaches, the two internal lengths (grain size and average slip band 
spacing) used in the model are directly measured by optical microscopy and atomic force 
microscopy. Dislocations pile-ups are modelled by “super-dislocations” having an apparent 
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Burgers vector magnitude B of many b. B was adjusted, in order to maintain a mean plastic 
deformation in the grain equal to the macroscopic plastic deformation. The calculated values 
(Fig. 3b) fit the experimental results (Fig. 3a) quite well. The order of magnitude for the maximal 
misorientation (1°) is notably retrieved. However, in the vicinity of the grain boundary, the 
misorientation gradient is much stronger than in the experiment. This difference may be due to 
the fact that “super-dislocations” were considered instead of discrete pile-up mechanisms. The 
discrete plastic behaviour of surrounding grains which was not taken into consideration in the 
model may also have an influence, especially close to the grain boundary. 

 
Fig. 3: Intragranular misorientation (°) in relation to a reference point in the grain center along a 

line parallel to the slip lines after 1% strain: (a) OIM measurement, (b) theoretical values. 
 
4. Conclusions and perspectives 
 
Intra-granular plastic slip heterogeneities have been modeled by periodic distributions of circular 
glide dislocation loops for a grain embedded in an infinite elastic matrix. Lattice rotation fields 
are quasi uniform in the grain except in a grain boundary layer where strong gradients occur. 
This new micromechanical approach makes it possible to capture intra-granular phenomena 
which were confirmed by OIM measurements. In a future work, we will investigate the effects of 
dislocation loop pile-ups and the influence of discrete plastic deformation in surrounding grains. 
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ABSTRACT 
 
 

Classical plasticity theories are not designed to predict the size-effect on the material response 
and become irrelevant to investigate microstructure whose size is of the order of magnitude of 1-
10 microns or below. Indeed experimental evidence shows that inhomogeneous plastic flow is 
naturally size-dependent. Generalized-continuum and non-local plasticity models incorporating 
intrinsic length scales account for such size effects. The aim of this study is to compare directly 
finite element size-dependent solutions obtained with two different models: Cosserat crystal 
plasticity and the non-local crystal plasticity theory of Gurtin. These models introduce higher 
order interface conditions at grain boundaries, involving the continuity of either lattice rotation 
or plastic strain. Although comparison of such enhanced models has been performed in the past 
in the case of single and double slip, large scale finite element simulations of polycrystalline 
aggregates have not been considered yet. For that purpose, 2D and 3D simulations of 
inhomogeneous deformation close to grain boundaries will be performed. The extent and grain 
size dependence of the boundary layer at interfaces will be determined for both classes of 
models.  
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 ABSTRACT   
 
Ductile rupture in solids can be thought of as a local process that initiates on a micro scale, but is 
driven by stresses on a macroscale. Thus it is truly a coupled micro-macro phenomenon. We can 
conceive of the process roughly as follows. Voids nucleate when the external stresses exceed a 
local cavitation threshold, which in a continuum description may be thought of as a volumetric 
bifurcation under multiaxial tension [1]. In actuality a void initiates with atomic separation, 
followed by a cascade of dislocations emanating essentially from a point in a crystalline lattice. 
Microstructural complexity in ordinary polycrystalline alloys virtually precludes further atomic 
analysis, but it is actually an advantage in a continuum analysis because it ensures that there will 
be a distribution of critical cavitation stresses throughout the material. Thus there will be 
competing, but independent, processes at work. The rate of void nucleation depends on the rate 
at which growing external stress exceeds higher and higher critical stresses within a 
neighborhood of the material [2]. However, void growth, and hence porosity, is controlled by the 
integrated dynamics of material surrounding each void. The macroscopic regime of external 
stresses is fully coupled to the microscopic, local regime surrounding a void so that eventually 
the growth rate of porosity forces the external tensile stress to pass a maximum [3]. In this paper 
we present a theoretical interpretation of these competing processes and show how it leads to a 
prediction of a rate dependent spall strength where microinertia around a growing void generates 
most of the rate dependence at the highest rates of expansion. 
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ABSTRACT 
 
 

Large-scale molecular dynamics simulations have been widely used to investigate the 
mechanical behavior of materials. But complex datasets, involving the positions of many 
million atoms, generated during the simulations make quantitative data analysis quite a 
challenge. This paper presents a novel method to determine not only dislocations in the 
crystal, but also to quantify their Burgers vectors. This is achieved by combining geometrical 
methods to determine the atoms lying in the dislocations cores, like for example the common 
neighbor analysis [1] or the bond angle analysis [2], with the slip vector analysis [3]. The first 
methods are used to filter out the atoms lying in undisturbed regions of the crystal; the latter 
method yields the relative slip of the remaining atoms and thus indicates the Burgers vector 
of those atoms lying in the dislocation cores. The validity of the method is first demonstrated 
on single edge dislocations in relatively small samples. Examples on large-scale atomistic 
simulations of nanoindentation reveal the full potential of the Burgers vector analysis. 
Furthermore a way will be sketched how this analysis can be used to determine densities of 
statistically stored and geometrically necessary dislocations, respectively. Hence, this method 
can be expected to provide valuable input for strain gradient plasticity models. 
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[3] J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton and S. M. Foiles, Surface 

step effects on nanoindentation, Phys. Rev. Lett. 87 (2001) 165507. 
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ABSTRACT 
 
Hydrogen-induced platelets (HIPs) are believed to play an important role in the “Smart Cut” 
process, where a thin layer of oxidized silicon is transferred from a hydrogen-implanted wafer 
onto a substrate after wafer bonding and heat treatment [1]. Despite the vast interest devoted to 
this technology over the last decade, neither the structure of these hydrogen-related extended 
defects nor the mechanisms involved in their growth have been completely understood. 
Experimental investigations suggest that hydrogen contributes in two ways to the thermal 
evolution of the platelets into microcracks, eventually leading to the splitting of the silicon wafer. 
Firstly, hydrogen could act “chemically” by facilitating Si-Si bond-breaking or by passivating 
existing Si dangling bonds, leading to the formation of flat internal surfaces. Secondly, hydrogen 
molecules confined inside the platelets could have a more “physical” role acting as a source of 
internal pressure. 
Atomistic modelling of the thermally activated platelet growth requires a combination of 
quantum-mechanical accuracy and large system sizes in order to couple the chemical reactions 
occurring at the platelet edges with the stress field in the silicon crystal.  
In this talk, I will present the results of multiscale hybrid molecular dynamics simulations of 
(100) HIPs in silicon, performed using the “Learn On The Fly” scheme [2,3]. Simulations of a 
full ~10 nm HIP system, performed in the experimental 600K-900K temperature range, suggest a 
possible platelet growth mechanism where H2 molecules form by desorption from the hydrogen-
passivated platelet surfaces. The molecules diffuse filling the platelet volume and eventually 
reach the highly stressed silicon bonds located at the platelet lateral boundaries, where they are 
observed to dissociate yielding irreversible Si-Si bond breaking and platelet growth.  
 
[1] M. Bruel, “Silicon on insulator material technology”, Electronic Letters, 31, 1201 (1995). 
[2] G. Csanyi, T. Albaret, M. C. Payne, and A. De Vita, ““Learn on the Fly”: A Hybrid Classical 

and Quantum-Mechanical Molecular Dynamics Simulation”, Physical Review Letters, 93, 
175503 (2004). 

[3] G. Moras, L. Colombi Ciacchi, G. Csanyi, and A. De Vita, “Modelling (100) hydrogen-
induced platelets in silicon with a multi-scale molecular dynamics approach”, Physica B, 
401-402, 16 (2007). 
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ABSTRACT 
 
To exploit mechanical properties of materials in a controlled way, a profound knowledge of the 
defects generated during deformation is required. But atomic deformation mechanisms (specially 
at the very initial stages) have proven to be complex and many issues are not well known yet. 
Nanoindentation experiments, with both very high spatial and load resolution, allow to determine 
the defects emerging at the surface, and their relation to the discontinuities in the load vs 
penetration curve. But sub-surface defect morphology generally remains hidden, and quite often 
only indirect conclusions can be inferred. Simulations offer then a very valuable tool to unveil 
defect configurations and their generation mechanisms. Here we present atomistic 
nanoindentation simulations (using molecular dynamics and static minimization approaches with 
up to several million atoms) performed in gold, both on flat and defective surfaces. The 
reliability of these simulations is proven by direct comparison with experiments from our own 
group [1], shedding light on them and showing a close match. We analyze the defect 
configurations during the local deformation of the surface, while monitoring their evolution. 
Generally speaking, the very first plastic events consist in the formation of dislocation half-loops 
that either glide or split into more complex dispositions. The gliding and further switch of these 
loops to other slip planes (cross-slip) give rise to step traces on the surface, which we propose as 
a generalized mechanism for the usual debris piling-up observed around nanoindentation traces. 
To provide a closer insight into real surfaces, we have performed simulations on defective 
surfaces, which show a qualitatively distinct plastic behavior with respect to flat (ideal) ones. 
The role of pre-existing surface steps is studied, which is often ignored when analyzing surface 
mechanical properties. Controversial issues, such as plastic activity preceding pop-ins in the 
force vs penetration curves, is addressed in the present work. We show how surface defects 
determine the nucleation site and geometry of the generated dislocations, as well as the very 
incipient surface plastic properties (the strength is lower with respect to flat surfaces). Moreover, 
the local critical shear stress prior to dislocation formation is reduced when the indentation is 
performed at a surface step. The present simulations provide a clear example of how 
heterogeneous defect nucleation during the deformation of a surface can influence the final 
plastic properties of the material at the nanoscale. We also show that these atypical deformation 
events do not result in pop-ins and exhibit a large degree of reversibility. All these issues may 
have profound implications in plasticity models, as well as in contact mechanics and friction 
between rough solids. 
 
 
[1] O. Rodríguez de la Fuente et al., Phys. Rev. Lett. 88, 036101 (2002); E. Carrasco et al., Phys. 
Rev. B 68, 180102 (2003); E. Carrasco et al., Surf. Sci. 572, 467 (2004); V. Navarro et al., 
accepted in Phys. Rev. Lett. (2008).  
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ABSTRACT 
 
 

The phase field crystal (PFC) method is anticipated as a new multiscale method, because this 
method can reproduce physical phenomena depending on atomic structures in metallic materials 
on the diffusion time scale. Although the PFC method has been applied to some phenomena, 
there are few studies related to evaluations of mechanical behaviors of materials by appropriate 
PFC simulation. In a previous work using the PFC method, tensile deformation simulations have 
been performed under conditions where the volume change was unavoidable during plastic 
deformation. In this study, to reproduce deformation under isovolumetic conditions, we proposed 
a novel numerical technique for PFC deformation simulation. Moreover, to evaluate the 
contribution of the driving force � (temperature) on deformation behaviors, we performed the 
tensile deformation simulations of nanopolycrystalline structures with different temperatures. 
The results confirmed that the resitence to dislocation motions increased by lowering 
temperature. As a results, grain rotation and grain boundary migration were restrained. 
 
 
1. Introduction 
 
It is of great importance to predict macroscopic properties of industrial metallic materials 
depending on defects in microstructures to improve material properties and/or create novel 
functions of such materials. Therefore, the development of a multiscale model bridging a 
molecular description and a continuum field theory is an urgent need. Recently, the phase field 
crystal (PFC) method [1] has been developed as a new multiscale numerical method that operates 
for atomic length scale with diffusive time scale. The PFC model introduces a periodic order 
parameter, which represents a local-time-averaged atomic density field to express regular 
arrangements of atoms in a solid phase. Therefore, this model inherently includes features of 
crystal systems, elasticity, plasticity and multiple orientations. Although, the PFC method has 
been applied to some phenomena, there are few studies on appropriate deformation simulation 
using this method. In previous PFC simulations of tensile deformation [1, 2], the volume of 
polycrystalline structure increases during plastic deformation simulation due to the difficulty in 
setting the boundary conditions appropriately. In this study, we propose a novel numerical 
technique for deformation simulation by the PFC method. By employing this technique, the 
deformation behaviours of nanopolycrystalline structures are studied at different temperatures.  
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2. Phase Field Crystal Method 
 
The free energy functional in the PFC method is minimized by a periodic order parameter or the 
phase field �, which is defined as the local-time-averaged atomic density and is a conserved 
value [1]. Therefore, this model can reproduce the dynamics based on individual atoms on the 
diffusion time scale that is much larger than the atomic vibrational time scale. In the steady solid 
phase of metallic materials, atomic locations are independent of time and become regular 
arrangements. Therefore, to express these periodic states, the phase field � must have periodic 
profiles. Here, the local maxima of the phase field � correspond to atomic positions. On the other 
hand, since atomic positions in the liquid phase become random depending on time, the phase 
field � is averaged and becomes a constant value �0. From the phase field � defined above, the 
dimensionless free energy functional F is given by [1] 
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where � is the driving force, which is proportional to a distance in temperature from a melting 
point, T - Tm. Here, T is a temperature and Tm is a melting point. Since � is the time-averaged 
density and a conserved value, the Chan-Hilliard equation provides the evolution of � as 
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Fig. 1(a) schematically shows the proposed numerical scheme for PFC deformation simulation in 
two dimensions. To reproduce tensile deformation under isovolumetic condition, the grid size in 
x-direction increases by the displacement increment d =�� �x�t at every time step, and the grid 
size in y-direction decreases so as to maintain �x�y = �x’�y’. Here, �x and �y are initial grid 
sizes, and �x’ and �y’ are grid sizes changed during deformation, and �t and��  are the time 
increment and dimensionless strain rate, respectively. In this methodology, since a constant 
strain rate is applied to all atoms, the deformation state becomes the affine deformation state, and 
periodic conditions can be used as boundary conditions.  
 
 
3. Deformation Simulation 
 
The deformation behaviors of a nanopolycrystalline structure are simulated by the PFC method 
with our technique. Before deformation simulation, a regular hexagonal grain structure with 
predetermined orientations is prepared by solidification simulation. 
 
 
   3.1  Computational model and conditions 
 
Fig. 1(b) is a schematic illustration of the desired nanopolycrystalline structure with regular 
hexagonal grains of which a distance between two sides is approximately 14 atoms. The 
predefined crystal orientations of each grain are shown at the center of each grain. The computa- 
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Figure 1. (a) Numerical scheme of tensile deformation simulation in two dimensions and (b) 
desired nanopolycrystalline structure with regular hexagonal grains and crystal orientations. 
 
tional domain size is set to be 50a 44a (500 440 lattices) and �0 = -0.285 is selected. Here, a is 
a distance between nearest atoms. To perform the deformation simulations under two different 
temperatures, � = -0.25 and -0.50 are employed. The temperature corresponding to � = -0.25 is 
higher than that of � = -0.50. The initial structure is formed by solidification simulation that 
starts from nuclei with predefined crystal orientations. As a result of solidification simulation 
with � = -0.25, the initial structure shown in Fig. 2(a) is obtained. To prepare same atomic 
structure for � = -0.50, after obtaining the structure shown in Fig. 2(a), further relaxation 
simulation is performed by changing to � = -0.50. The computed structure is shown in Fig. 3(a). 
Tensile deformation simulations are performed under a constant dimensionless strain rate ��  of 
1.84 10-6, which corresponds to realistic strain rates of approximately 100s-1 to 101s-1, and use 
the dimensionless time step �t = 3.0 10-3. Periodic conditions are used in all directions. 
 
 

3.2  Numerical results and discussion 
 
Fig. 2 indicates the deformation states of the nanocrystalline structure for the case of � = -0.25. 
As the strain increases, grain rotations occur and cause the motions of dislocation at grain 
boundaries, such as the dislocation shown in the circle of Fig. 2(a). It is also observed that grain 
rotation occurs between two neighboring grains with a relatively small misorientation (arrows in 
Figs. 2(a)(b)). As a result of coalescence due to grain rotation, the grain boundary between 
integrated grains disappears and the grain boundary migration driven by curvature is accelerated, 
such as the grain boundary in the circle of Fig. 2(c). With further deformation, grain rotations 
and grain boundary migrations occur continuously in other grains (Figs. 2(d)(e)).  
 

 
Figure 2. Deformation process of nanocrystalline structures in the case of � = -0.25. 
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Figure 3. Deformation process of nanocrystalline structures in the case of � = -0.50. 
 
Fig.3 shows the deformation states in the case of � = -0.50 that is a lower-temperature state than 
the former. The comparison between Figs. 2(a)-(c) and Figs. 3(a)-(c) suggests that the dislocation 
motion at grain boundary becomes slower than those at higher temperature. Moreover, grain 
rotation is harder to occur. As a result, grain coalescence observed in the former can’t be 
confirmed. With further deformation as shown in Figs. 3(d)(e), unlike the former, it can be 
confirmed that grain boundary migration is restrained. These results clarify that the PFC 
deformation simulation with our technique can reproduce the increase of the resistance to 
dislocation motion by lowering temperature. 
 
 
4. Conclusion 
 
To express deformation under isovolumetic condition, we proposed the novel numerical scheme 
for PFC deformation simulation. Moreover, to evaluate the influence of the driving force � on 
deformation behaviours, we performed the tensile deformation simulation of nanopolycrystalline 
models at two different temperatures. At higher temperature (� = -0.25), the intergranular 
deformation such as grain rotation, grain boundary migration and grain growth became the 
dominant deformation mechanism. On the other hand, at lower temperature (� = -0.50), unlike 
the former, the resistance to dislocation motions at grain boundary increased by lowering 
temperature. As a result, grain rotation and grain boundary migration were restrained. 
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ABSTRACT 
 
 

We have used a hierarchical multiscale modeling scheme for the analysis of carbon nanotube 
reinforced nanocomposites. This scheme consists of definition of two boundary value problems, 
one for macroscale (the scale in which the material exists homogeneously and we are interested 
in modeling the material behavior on that scale), and another for microscale (the scale in which 
the material becomes heterogeneous and microstructural constituents emerge). The coupling 
between these scales is done by using homogenization techniques. Using the presented scheme, 
we have studied carbon nanotube (CNT) reinforced composites behavior and the effects of an 
interphase layer between CNT and matrix material. Several nanocomposites with different CNT 
volume fractions are analyzed and the effects of CNT volume fraction on the global behavior of 
nanocomposites are studied. For interphase layer, two parameters, namely the thickness and 
elastic modulus, are optimized so that the effective elastic properties of the nanocompiste match 
the results obtained using more detailed molecular dynamics studies. 
 
 
1. Introduction 
 
Carbon nanotubes are believed to have elastic moduli of the order of 1 TPa with strengths in the 
range of 30 GPa in addition to exceptionally high electrical and thermal conductivity. These 
properties combined with recent advances in scaling-up production techniques for carbon 
nanotubes have generated considerable interest in utilizing carbon nanotubes as nanoscale 
reinforcement in composites [1].  
For better understanding the behavior of nanostructured materials, several modeling techniques 
including Molecular Dynamics, Micromechanical methods, Continuum based methods and 
multiscale methods have been developed. Although the continuum based methods have been 
applied to study the effective mechanical properties of nanocomposites, these methods are 
usually limited to simple microstructures. So, other approaches have been developed which are 
known as homogenization techniques. While homogenization techniques are known to be 
excellent tools to predict the effective linearly elastic properties of heterogeneous materials, most 
of the existing homogenization methods are not suitable to deal with large deformations and 
complex loading paths and cannot account for an evolving microstructure [2]. To overcome these 
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problems a computational homogenization approach has been developed, which is essentially 
based on the solution of two boundary value problems, one for the macroscopic and one for the 
microscopic scale [3,4]. In the macroscale level, there is no assumption on the material 
constitutive equation and the constitutive model is obtained numerically in every point. At the 
microscale level, there is no limitation on the material model of the constituents and any arbitrary 
material model may be used for each constituents.  
 

 
Figure 1. Hierarchical multiscale modeling scheme 

 
 
2. Hierarchical multiscale modeling scheme 
 
Hierarchical multiscale modelling scheme is essentially based on the derivation of the local 
macroscopic constitutive response from the underlying microstructure through the adequate 
construction and solution of a microstructural boundary value problem.  
The macroscale problem is discretized using finite element method without any assumption on 
the material constitutive response. In every material point, where the constitutive response is 
needed, a microscale boundary value problem is defined and solved, and then the overall 
constitutive response is determined and returned back to the macroscale problem. Using full 
numerical integration rule in the elements, we need four microscale problems in every 
macroscopic element (i.e. in quadrature points). This is shown in Fig. (1). 
For every material point in the macroscale problem, the macroscopic deformation gradient 
tensor, MF , is calculated and next used to formulate the boundary value problem in the 
microscale level. Then the microscale problem is solved to find the microscopic stress 
distribution in the entire microscale domain. Using the computational homogenization method, 
the macroscopic stress tensor, MP , is calculated from the stress distribution in the microscale 
problem and transferred back to the macroscale. As a result, the macroscopic stress tensor is 
calculated in every material point and every equilibrium iteration by solving the corresponding 
representative volume element (RVE) problem. 
The macro-to-micro transition is done by imposing the macroscale deformation gradient tensor 

MF  as the boundary conditions on the RVE problem and solving the consequent boundary value 
problem. To this end, we consider the undeformed position vector of a point in the boundary of 
the RVE which deforms according to 
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 0,Mx X X on� <F
� ��  (1) 

where 0<  is the undeformed boundary of the RVE. Applying the above boundary condition on 
the all points located on the boundary of the RVE, we can solve the RVE problem and hence the 
stress distribution and boundary reaction forces will be available. 
The transition from microscale to the macroscale is done using the averaging theorems. We use 
the volume averaging rule for the case of the first Piola-Kirchhoff stress tensor to get the 
macroscopic measure from the microstructure results as follows: 

 
0

0
0

1
M mV

dV
V

� 6P P  (2) 

 
 
3. Numerical examples 
 
We have modelled carbon nanotube reinforced polymer nanocomposites with different volume 
fractions of nanotube content. The nanotubes in these models are assumed to be similar in 
diameter and length, with the diameter of 1.4 nm and length of 50 nm. For the matrix material, 
the NASA LaRC-SI polymer is used, with a Young’s modulus of 3.8 GPa and Poisson’s ratio of 
0.4. These values are chosen so that the results can be compared with the similar studies 
published in the literature [5,6].  
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Figure 2. Young’s modulus of CNT/Polymer nanocomposite with respect to CNT volume fraction 

 
Using the presented multiscale scheme, the Young's modulus of CNT reinforced polymer 
nanocomposites with various CNT volume fractions is determined. CNTs are modelled both with 
and without an interphase layer to study the effects of considering an interphase layer on the 
effective properties of nanocomposites. The thickness of the interphase layer is assumed to be 
equal to the mean diameter of the CNT and its elastic modulus is considered to be 10 times that 
of the matrix polymer [7]. There is a nonlinear relation between effective Young's modulus and 
reinforcement volume fraction contrary to the simple rule of mixtures commonly used in 
determining effective elastic properties of classical composites. In Fig. (2) the results obtained 
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here are compared with those obtained using different methods published in the literature. 
Odegard et al. [6] have presented a constitutive model for nanotube reinforced polymer 
composites using a multiscale MD/equivalent continuum approach. Liu et al. [5] have studied 
elastic properties of nanocomposites using a boundary element method based on rigid fiber 
model. The results obtained in these references are compared with our results in Fig. (2). In 
addition, the results obtained using the micromechanical Halpin-Tsai equation from Ref. [5] are 
compared with these results. The Young’s modulus of models including the interphase layer 
approaches to the results obtained with more detailed MD results of Ref. [6], with very smaller 
computational costs. 
 
 
4. Conclusions 
 
We have used a hierarchical multiscale modeling scheme for the analysis of elastic properties of 
CNT/Polymer nanocomposites. This scheme consists of definition of two boundary value 
problems for coarse and fine scales. Using the computational homogenization method, the coarse 
scale stress measures are calculated and used in the coarse scale problem. Nanocomposites with 
arbitrary RVE and constituents materials can be analyzed using the presented scheme. 
We have studied nanocomposites with and without an interphase layer between CNT and 
polymer. The effective elastic properties of nanocomposites with respect to CNT volume fraction 
are determined and compared with the similar studies. It is observed that Young’s modulus of the 
models with the interphase layer approaches to that of the detailed full atomistic MD 
simulations.  
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ABSTRACT 

 
Indentation of a model polycrystal is studied using two-dimensional discrete dislocation 
plasticity. The polycrystal consists of square grains having the same orientation. Grain 
boundaries are modelled as being impenetrable to dislocations. Every grain has three slip 
systems, with a random distribution of initial sources and obstacles, and edge dislocations that 
glide in a drag-controlled manner. The indenter is wedge shaped, so that the indentation depth is 
the only geometrical length scale. The microstructural length scale on which we focus attention 
is the grain size, which is varied from 0.625μm to 5μm. While the predicted uniaxial yield 
strength of the polycrystals follows the Hall--Petch relation, this grain size dependence couples 
to the dependence on indentation depth. Polycrystals with a sufficiently large grain size exhibit 
the same ``smaller is harder'' dependence on indentation depth as single crystals, but an inverse 
indentation depth dependence occurs for fine-grained materials. For sufficiently deep 
indentation, the predicted nominal hardness is found to scale with grain size d according to 

� � � � 2
1*1 dHH NN �� = , with =

NH the single crystal nominal hardness and a material length scale.  
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ABSTRACT 
 
It has long been a goal in mechanics to develop multiscale models that concurrently handle 
important mechanical phenomena spanning from the atomistic scale to the continuum scale. This 
goal is particularly important in metal fracture, where the separation of material at the crack tip is 
inherently atomistic but is influenced by dislocation plasticity occurring scales up to 100s of 
microns. Dislocation plasticity itself shows size-dependent features at the micron scale, 
necessitating treatments such as discrete-dislocation modeling or gradient plasticity models that 
go beyond standard continuum plasticity. The coupling of atomistic models to discrete 
dislocation models has been achieved by the author and coworkers in recent years [1]. The final 
piece of the hierarchical model – connecting discrete dislocation plasticity to continuum crystal 
plasticity – has now been accomplished and is the subject of this presentation. Specifically, we 
present a hierarchical multiscale model that couples a region of material described by discrete 
dislocation plasticity to a surrounding region described by conventional crystal plasticity [2]. The 
coupled model captures size-dependent plasticity phenomena, such as dislocation structuring and 
formation of geometrically necessary dislocations, that can occur at the micron scale while also 
capturing the plastic flow, and associated energy dissipation, at much larger scales where size-
dependent effects are minimal. The key to the model is the treatment of the interface between the 
discrete and continuum regions, where continuity of tractions and displacements is maintained in 
an average sense and the flow of burgers vector via ``passing'' of discrete dislocations is 
managed. The model is validated through uniaxial plane-strain tension tests which show that the 
coupled model deforms similarly to both single-scale models. The multiscale model is then 
applied to study crack growth, where both near-tip dislocation structures and far-field plastic 
dissipation are crucial to the overall toughening. The integration of the present method with 
atomistic/discrete-dislocation models1 will be briefly discussed, and points toward achievement 
of a true atom-to-continuum multiscale model for metallic materials.  
 
 
[1]  Shilkrot L, Miller R, Curtin W, Multiscale plasticity modelling: coupled atomistics and 
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ABSTRACT 
 
While embedded multi-scale material modeling offers an attractive path for capturing the effects 
of detailed sub-scale behaviors in a coarse-scale response, direct embedding of expensive sub-
scale models typically entails high computational cost. Using an adaptive sampling 
methodology, this expense is ameliorated and we are able to perform calculations which are 
otherwise intractable. Our adaptive sampling approach utilizes multivariate-kriging interpolation 
in conjunction with the metric-tree database, and has been used successfully to simulate 
deformation of polycrystalline metals of cubic symmetry [1,2,3]. Recent efforts focus on the use 
of adaptive sampling with a multi-scale model that captures the profound deformation 
heterogeneity in multi-phase and low symmetry polycrystalline metals. Various modeling and 
algorithmic developments enabling this new work will be presented. Example applications 
include large scale simulations using multiple-data multiple-program parallelism. 
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ABSTRACT 
 
The problem of hydrogen diffusion in metals and its implications for stress corrosion cracking 
are studied from an atomistic perspective. Long-range diffusion of hydrogen within the crystal is 
modeled using on-the-fly kinetic Monte Carlo (KMC) calculations. Diffusion barriers and rates 
are ascertained from the local environments of H atoms using embedded atom (EAM) potentials. 
To improve computational efficiency, on-the-fly calculations are supplemented with 
precomputed strain-dependent energy barriers in defect-free parts of the crystal. These 
precomputed barriers, obtained with high-accuracy density functional theory (DFT) calculations, 
are used to ascertain the veracity of the EAM barriers and correct them when necessary. 
Examples of bulk diffusion over extended time scales in defective crystals are presented and 
shown to be in good agreement with theory. Computational studies of the interaction of 
hydrogen with Mode-I cracks and the ensuing embrittlement of the host metal are also presented. 
Our model provides an avenue for simulating the interaction of hydrogen with cracks, 
dislocations, grain boundaries, and other lattice defects, over extended time scales. 
 
[1] A. Ramasubramaniam, M. Itakura, M. Ortiz, and E. A. Carter, “The Effect of Atomic Scale 
Plasticity on Hydrogen Diffusion in Iron: Quantum Mechanically Informed and On-the-fly 
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This work was supported by a grant from the Office of Naval Research. Computational resources 
were provided by the Arctic Region Supercomputing Center and the Maui High Performance 
Computing center. 

Multiscale mechanics

246



Stress analysis during the interaction between dislocations and a main 
crack: Case of a bi-material 

 
 

M. Chabaat1 and H. Hamli Ben Zahar2 
 

 

1Professor, 2Doctorate student, Built & Envir. Res. Lab., Civil Engineering Faculty, 
University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia, Bab 

Ezzouar, Algiers 16111, Algeria 
(E-mails: mchabaat2002@yahoo.com, hzahar2004@yahoo.fr) 

  
 
 

ABSTRACT 
 
In this study, stress and displacement fields for an edge dislocation near a semi-infinite 
interfacial crack are obtained using the complex potential of Muskhelishvili’s elasticity 
treatment of plane strain problems. It is shown herein that if the dislocation is originated 
elsewhere and moves to the vicinity of a finite interfacial crack then, the image forces exerted 
on the dislocation have an oscillatory character (with respect to the dislocation position). It is 
also proven that there is no such oscillation of image forces if the edge dislocation is emitted 
from the finite interfacial crack. Thus, the Stress Intensity Factor (SIF) produced by the edge 
dislocation also has an oscillatory character for both semi-infinite and finite interfacial cracks. 
This latest depends on whether the dislocation is emitted from the crack or comes from 
elsewhere. 
 
 
1) Introduction 
 
In the last decade, studies on the elastic behaviour of interfacial cracks have been intensively 
documented [1-4]. It has been proven that the interfacial fracture strength of multiphase solids 
may depend on the properties of cracks embedded in the interfaces. On the other hand, there 
is an oscillatory character in the stress and displacement field near the tip of interfacial cracks. 
Recently, several researchers [4-6] have focused their work toward the study of the stress field 
generated during the interaction of singularities with interfacial cracks. It is obvious that 
interactions between dislocations and cracks play an important role in fracture. These 
interactions produce image forces on the dislocation and generate stresses around the crack 
tip. This latest can either shield or amplify the stress field in the vicinity of the crack tips. In 
this study, the stress field is derived in the case where the dislocation is originated from 
elsewhere and moves to the vicinity of the crack.  
 
 
2) Interactions interface cracks  
       
Considering a two dimensional, linear elastic solid with a planar interface along plane 2 0x � . 
The solid is made of two materials A and B as shown in Figure 1 and the boundary conditions 
on the border of the interface are such as: � � � �1 2 1 2, 0 , 0 ,A B

i iu x x u x x� �� � �                            

Multiscale mechanics

247



� � � �2 1 2 2 1 2, 0 , 0A B
i ix x x x� �� �� � �  where ui represents the displacement in the direction ix and 

2i�  the component of stress 1,2i �  

 

Figure 1: A slit with the material interface in two dimensions. 

In this work, analysis of the influence of this zone of dislocations on the principal crack. This 
study is based on the investigation of the elastic interaction of a crack with neighbouring 
dislocations directed in an arbitrary way. In this case, the principal crack is presented like a 
semi-infinite crack. This latest is subjected to a stress field which is characterized by a stress 
intensity factor (KI). Thus, the interaction of dislocation with the principal crack is evaluated 
in term of amplified (or reduced) stress intensity factor acting at the tip of the main crack This 
theory regards the process of propagation of the crack as being a development and a 
subsequent coalescence of micro defects in the vicinity of the point of the principal crack. 
 

 
 

Figure 2: Isochromatic cuttings of fringe observed in a slit under mode I. 
 

The problem is formulated in terms of the complex potentials given by >  and ?  [1]. 
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For the plane stress, the displacement and the stress field can be expressed by two complex 
analytical potentials as; 
 
                      � � � � � � � � � �1 2

1u z u iu k z z z z> > ?�
) &A� � � � �( %                                    (1) 

     � � � �11 22 2 z z� � > >) &A A� � �( %   and � � � �22 11 122 2i z z z� � � > ?) &AA A� � � �( %           (2) 

 
If the dislocation is located in the medium A, then, the complex potentials can be written as; 
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If the dislocation of edge is located in the medium B, the two complex potentials are obtained 
by exchanging the superscripts A and B to obtain, 
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According to Dundurs, the stress field is expressed in term of functions of Airy using two 
parameters, � and +  : 
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where
A

B

�
�

< �  in which A� and B�  refer to the rigidity of materials A and B, respectively. 

 
 
 
 

Multiscale mechanics

249



3) Complex analytical functions of dislocation:  
 
The presence of dislocation in the vicinity of the main crack is expressed by two complex 
analytical functions as follows;                                                 
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           (9)  

 
where be is the vector of Burger and Z1d is the dislocation’s position. In the presence of a 
dislocation (see Figure 3), the solution is given using the principle of superposition on the 
basis of the following potentials functions; 
 
                                      � � � � � �inttot fentez z z> > >� �                                             (10) 
 
                                      � � � � � �inttot fentez z z? ? ?� �                                                (11) 
 
In the case of homogeneous materials, all parameters are equal ( A� = B�  and AB = BB ). 
Then, the parameters * ,C ,D  are all zero i.e. 0� +� � and the total potential complex 
becomes; 
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Substitution of Eqn. (12) and (13) into Eqn. (2), the stress field becomes;   
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where �  is the distance between the main crack and a neighbouring dislocation, +  is the 

orientation of dislocation with respect to the crack, r  is the length of the dislocation and @  is 
the angle of orientation of r  (see Figure. 3). 
 
4) Stress intensity factor: 
 
The stress field is of interest if it is characterized by an important parameter such the stress 
intensity factor. This latest is essential for the study of the breaking strength of materials since 
it is considered as being the root of a breaking process. Assuming that the dimensions of 
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dislocation are small compared to those of the main crack, the mode I SIF can be written as 
follows; 
                                        � �1 2 0

lim 2 y y x yz
i z i! " "

#
$ � $ � �                                 (15) 

                                    
                      

Figure 3 : Schematic representation of a crack interacting with a dislocation. 

                                                 
Substitution of Eqn. (15) into Eqn. (16) and using identity properties, the following 
expressions for the SIF;  

          K 1 = � �3 5
1 2 2 2

2 2 sin( ) sin( ) os( ) 2sin( )sin( )
(1 )
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% % %& ' % ' ' %
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� � � � � �
�

             (16) 

Figure 4: Stress intensity factor for the case � �0' � .

The mode I SIF in the absence of dislocation can be written as follows;  

Y

X

B

'

1 2 3 4 5 6

-1

-0.5

0.5

1

K 1/K 0

Multiscale mechanics

251



        2 33 71 1
1 2 2 2 2 2 2

2 2 sin( )cos( ) cos( )sin( ) sin( )
(1 )

tip bk
k

+ + + +� @ @ @
, �

� � � � �
�

             (17) 

 
but in presence of n successive dislocations, the mode SIF is a superposition of all effects as;  
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where 1

tipk = K 1 is the SIF at the main crack tip. 
 
Substitution of Eqn. (17) into Eqn. (18), the global SIF becomes;   
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5) Conclusion: 
 
 If the slip plane of the edge dislocation passes through the tip of a semi-infinite interfacial 
crack, the slip part of the image force is independent of the angular position of the dislocation 
and is inversely proportional to the distance from the crack tip.The stress intensity factors 
change continuously when the edge dislocation moves from one medium through the interface 
to the other medium. For a finite interfacial crack, an edge dislocation emitted from one of the 
crack tips usually shields that crack tip but antishields the other tip. On the other hand, an 
edge dislocation originated elsewhere and moves to the vicinity of a finite interfacial crack 
will shield or antishield both crack tips. 
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ABSTRACT 
 
 

Due to their unique properties metallic foams are promising material components for various 
industrial applications, such as in the automotive industry, as well as in power sources (Ni 
battery electrodes). Experimental evidence has documented that during compression of metal 
foams, deformation is governed by the development of horizontal localization bands; cell failure 
(brittle fracture or plastic buckling) occurs within the bands leading to the collapse of the 
material. In the present study cellular automaton numerical simulations are performed to model 
the damage evolution during compression and to predict the stress-strain response. The 
simulation predicted stress-strain curve is found to be in very good agreement with experimental 
stress-strain data obtained for Al foams.    
 
 
1. Introduction 
 
Some of the unique properties of metal foams are good stiffness and strength to weight ratios, 
high impact energy absorption (relevant for applications in the automotive industry), good sound 
damping, electromagnetic wave absorption, thermal insulation and non combustibility [1].  
 
From a mechanical point of view one of the main processes of interest is the formation and 
evolution of damage during deformation. The present study will focus on compressive loadings. 
Experimental evidence has documented that damage evolution under compressive stresses is 
governed by the formation of multiple localization bands, which lead to localized collapse of the 
material [2]. Over the past decade various modeling approaches such as gradient plasticity [3] 
and the micromoprphic continuum [2] have been used for analytical and numerical modeling in 
order to capture the stress-strain response and localization band thickness in foams. Here the 1D 
method presented in [4] is extended in two dimensions and implemented using cellular 
automaton simulations, which give the stress-strain response under compressive loads. It should 
be noted that this method allows for randomness in strength to be taken into account, which is a 
generic feature associated with the irregular microstructure of metal foams (as opposed to regular 
honeycombs).   
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2. Theoretical Formulation  
 
Experiments [1,2,5] have shown that foams as porous materials undergo three stages during 
compression: initially the beams or cell walls bend elastically, then plasticity takes place through 
the formation of strain localization bands, and eventually the material collapses due to fracture or 
plastic buckling that occurs within the bands. To capture this behaviour in a phenomenological 
manner, the stress-strain response is defined as  
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where M is the elastic modulus, c�  the crushing threshold, and 00  the parameter determining the 
extension of the softening regime given as  
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These parameters are defined in Figure 1. 
 
  
 
 
 
 
 
 
 

       Figure 1: Qualitative representation of stress-strain response. 
 
As individual cells collapse, their neighbours are affected. We describe this local interaction in 
terms of an interaction stress between adjacent cells i and j, as 
 

� �ij ij i jσ D ε ε� �  ,                                                         (3) 
 
where � �ij ij c crushD � + � 0  and ij+  is the non-dimensional coupling constants depending on the 
orientation with respect to the compression direction.  
 
The quasi-static stress balance, which is the equilibrium equation for our system is written as [4]  
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Coarse graining now the above equation, over a large volume that is comparable to the cell size 
d, and following the same procedure as in [4], for the two-dimensional case the strain-gradient 
type equilibrium condition has the form: 
 

� �� � � �ext r D r 0� � � 0 � C C0 �) &( % ; p2 c

c n

0
D d

0

+) &�
� ' $0 +( %

,                   (5) 

 
where p n,+ +  are coupling constants at the parallel and normal to loading direction, respectively. 

 
 

3. Simulation results 
 
Numerical simulations of the constitutive Eqn. (4) have been performed using a cellular 
automaton. The local heterogeneities in the properties of real cellular materials are taken into 
account in the simulations by assigning random variations of the crushing thresholds to the cells, 
i.e. the thresholds C�  are considered independent random variables obeying a Weibull 
distribution with scale and shape parameters m and h respectively, leading to specific values for 
the mean CF � G  and variance c7� . The system is loaded by increasing the external stress ext�  
from zero in small steps ext*� . In each of the cells where the local (external plus internal) stress 
exceeds the local crushing threshold, the local strain is increased by a small constant amount 70 . 
Then, new internal stresses are computed for all sites and it is checked again whether the sum of 
the external and internal stresses exceeds the local crushing threshold. The local strain at the now 
“damaged” sites is again increased, etc. This is repeated until the system has reached a new 
stable configuration. Figure 2 shows an instance of the damage evolution in the foam predicted 
by the cellular automaton simulations.  
 

 
 
 
 
 
 
 
 

Figure 2: Simulation results during damage evolution at 0.50 � ; green denotes “damaged” cells.  
 
In Figure 3 plots of the effective stress vs. effective strain computed this way, in the case of a 
relatively high-disordered (Fig. 3a) and a low-disordered (Fig. 3b) material are shown. In the 
former case the values of the various parameters used are: p 0.1+ � , n 0.1+ � , crush 0.650 � , 

comp 10 � , c 0.0010 � , M 70 GPa� , while C 0.13 MPaF � G�  and c 0.0027� �  MPa, while in 

the latter all parameters are the same except 6
c 3 10�7� �  MPa. Experimental data from 

compression of aluminum foams [5] are also included, showing good agreement between the 
simulation predictions and real measurements. 
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Figure 3: Effective stress-strain response; circles: experimental data [5], line: numerical 
prediction. (a) Relatively high-disordered foam; (b) Low-disordered foam. 
 
 
3. Discussion 
 
It is important to note that by including strong disorder into the formulation described in the 
previous sections, one can describe a global stress strain graph that is monotonically ascending 
(see Fig. 3) in accordance with experimental measurements, in spite of a local stress strain 
relationship that has softening (see Fig. 1); one would expect a deterministic law for the same 
parameters to produce a horizontal strain jump at constant stress (and at a much higher stress 
level). It is also noted that the above formulation is an initial attempt to describe the compression 
behavior of metallic foams. This formulation can further be enhanced, e.g. by modifying the 
assumption for the local stress-strain response given by Eqn. (1). A complete comparison 
between the simulation results of the method presented in this paper with the results of finite 
element implementation, as well as further comparison with available experimental data is under 
preparation [6].  
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ABSTRACT 
 
We have been developing a hybrid simulation scheme by concurrently combining the electronic-
density-functional-theory (DFT) and the atomistic molecular dynamics (MD) method. In the 
hybridization scheme, multiple DFT regions, each of which is composed of a relatively small 
number of atoms, are embedded in a system of classical MD atoms. For robust coupling of the 
DFT and MD regions with reasonable mechanical accuracy, the buffered cluster method [1] has 
been proposed, which requires no link-atoms and is applicable to a wide range of materials (Si, 
C, alumina, Al, etc.) and settings. In this paper, we add a new feature to the hybrid DFT-MD 
simulation scheme: the sizes of the DFT regions can change adaptively using instantaneous inter-
atomic distances and three-body angles to trace the chemical reactions with reduced computation 
cost as compared to the full DFT calculation.  
 
Both indentation- and friction-induced local oxidation of a Si surface in water environment have 
been reported [2,3]. Understanding such atomic-scale chemical processes in realistic setting is a 
key to advance MEMS-related technologies such as the high fabrication precision, high 
resistance to wear, and low friction. Motivated by these, in this paper, we apply the hybrid DFT-
MD simulation scheme to nano-indentation and friction of H-terminated diamond-tip to H-
terminated Si(100) surface with a water molecule in-between. We thereby find that the water 
molecule either decomposes to oxidize the Si surface or escapes from the contact region 
depending on the combination of simulation settings (the sharpness of the tip, the direction and 
position of the tip with respect to the Si surface, etc.).  
 
[1] S. Ogata, “Buffered-Cluster Method for Hybridization of Density-Functional Theory and 

Classical Molecular Dynamics: Application to Stress-Dependent Reaction of H2O on 
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[2] I. Zarudi, L.C. Zhang, and M.V. Swain, “Effect of Water on the Mechanical Response of 
Mono-Crystalline Silicon to Repeated Micro-Indentation”, Key Engineering Materials, 233-
236, 609 (2003). 
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ABSTRACT 
 
 

A flexible, extendable and easy to use FEM/MD combination code has been developed. The 
flexibility and modularity is achieved by using Python language. Python has gained considerable 
involvement in scientific computing because of its complementary characteristics. The Fortran 
subroutines of MD and FEM methods are the main calculators. Although Fortran still has the 
majority in scientific computing because of its construction purpose as pure numerical 
calculations, it takes numbers and gives results as again numbers, preparation of input data for 
complex situations and handling huge numbers of results is quite inconvenient processes in 
Fortran. Therefore, recently developed scripting languages may help to close these 
inconveniencies. The combination of MD and FEM methods using a handshake region method, 
implemented by Python, has been produced. The main calculations carried on with Fortran 
subroutines however management of the subroutines and some parts of pre-post processing 
stages governed by Python. The purposes of this study are to reduce the modeling/analyzing time 
for the focusing on problem more than the computing details and initiate an extendable 
computation frame via its modular structure.   
 
 
1. Introduction 
 
Several computational models, which link different length and time scales, are developed to 
predict the behaviour of materials. Favourable progresses have been made especially in 
combining of atomic and continuum methods. However, significant challenges in theory and 
numerical algorithm developments are still remaining to be overcome. On the other hand, it is 
easily seen that, whatever the combination technique, one of the main limitation for multiscale 
modeling is preparation of the model, handling the huge amount of data and visualize the results 
for analyzing. Therefore, in this study, Python which offers strong support for integration with 
other languages and tools and comes with extensive standard libraries, has been selected as 
development platform for combine different methods and support them by its versatile properties 
at the pre-post processing stages. Python applications are increasing in scientific computing for 
various fields, such as computational materials, chemistry and biology. Python is an object-
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oriented, flexible and extensible scientific programming platform that offered various 
computational tools for data generation, management, analysis and visualization. 
A combined continuum-atomic method implemented by python language is applied to the 
fracture problem of single crystal Nickel metal. Linear elastic FEM and molecular mechanics 
with Morse potential Fortran routines are interconnected with each other using the Python 
scripting language. At the processing stage, loadings and constraints are governed by FEM and 
discrete fracture process is governed by atomic simulation. Continuum and atomic combination 
is made by force equilibrium of coincided atoms and nodes in the model geometry. Progress of 
the simulation process can be investigated during iterations by graphical result window 
developed with matplotlib, python plot library. Because of modular structure, developed python 
framework can easily be expanded by adding new functions of material modeling methods and 
different materials.  
 
 
2. Combination Method & Model 
 
Because of the interatomic distances are Angstroms unit in length, the size of a discrete atomic 
model is very small. However, a continuum domain can be simulated in any size if the used 
parameters are selected in appropriate units. Even it is possible to model in very small scales, 
continuum models cannot handle the discrete nature processes of material behaviors such as 
fracture. Therefore, advantages of discrete nature of atomic modeling and computational benefits 
of continuum modeling can be used together by combination of them.  
For simplicity, it is considered in this study 2D coupling between the two models (Figure 1). A 
crack inserted molecular dynamics region of FCC Ni crystal surrounded by 200x200 Å square 
continuum region which divided into finite element mesh has been modeled. All the calculations 
governed by a main program written in python. The main calculation tasks are carried out by 
Fortran subroutines. The connection of the main program and these subroutines are made by 
using F2PY, Fortran to Python interface generator tool that converts Fortran source code into 
python binary modules [1]. 
     
 

 
 
Figure 1. An example model of the FEM/MD coupling module. A crack inserted molecular 

dynamics region of FCC Ni crystal surrounded by continuum region which divided into finite 
element mesh. 
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2.1 Finite Element Region 
 

There are different approximation techniques to analyze continuous systems. One of the mostly common 
techniques is the finite element method.  The FEM is a technique for solving partial differential equations 
by discretising these equations in their space dimensions. The discretisation is carried out locally over 
small regions of simple but arbitrary shape, the finite elements [2].  
The linear static finite element procedure has been used with triangle elements. During the fem 
solution, the assembly of the global stiffness matrix which requires huge amount of storage and 
limit the element numbers of the system is avoided and instead a better solution procedure, a 
“mesh-free” approach by the preconditioned conjugate gradient (pcg) technique has been used. 
FEM implementation carried out by using the subroutines explained in reference 2. The single 
crystal Nickel material properties have been applied to consistency of two methods [3].   

 
 
2.2 Molecular Dynamics Region 
 

MD calculation carried out by using Morse interatomic potential. Morse function is one of the 
oldest potential energies for metals. The parameters has been used in the model can be seen in 
the next table. A notification is necessary due to the 2D nature of the model. It has been adopted 
the similar approach of quasi-continuum method here [4]. In this example, the MD cell 
dimension along the out-of-plane direction, dz = 3.52 Å, is the same for the lattice constant of Ni 
crystal. Periodic boundary condition has been applied along the out-of-plane direction in this MD 
region. Therefore, it will correctly treat atoms with different values of dz. 

 
 

 
 

Figure 2. Details of the coupling procedure of FEM and MD 
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2.3 Handshake Region 
 

The interface region in Figure 1 has both discrete atoms and finite elements overlapped each 
other as the atom and node coordinates exactly coincide. The points in the interface region are 
called boundary atoms/nodes. The coupling procedure of atomic and continuum which is 
introduced by Kwon [5] has been implemented in this handshake region. The details of the 
procedure can be seen in the Figure 2.  
 
 
4. Results & Discussion 
 
The crack opening was modeled in atomic resolution by displacement of atoms which covered 
by the finite element region where the loading and boundary conditions applied on it. The nodes 
at the right side of the fem model were fully fixed to move. The tensile load is applied in the 
vertical direction at the top and bottom boundary. The equilibrium positions of atoms are shown 
in the following figure during the incremental loading. Using the plotting libraries of python, the 
result of each step can be observed during the simulation. It can easily seen that the difference of 
the combined model from the only MD model. Combined model gives more realistic results 
because flexible boundary conditions provided by FEM. The ability of integration of other 
languages and object-oriented property of python make it possible to enhance this model with 
tight binding molecular dynamics that the chemical bonding/debonding of crack tip atoms can be 
simulate by it.  
 

 
 

Figure 3. Simulation result of the model under the loading. 
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ABSTRACT 
 
Accurate reliability calculations require a complete characterization of the bulk modulus. Bulk 
modulus specifically assumes importance in the case of constrained geometries (for example lead 
frame and die), where the deformation cannot be assumed to be one-dimensional, in which case 
shear modulus is more important than bulk modulus. Most polymers exhibit much more 
compliant shear response compared to the bulk response. The shear response of most polymeric 
systems is independent of the hydrostatic loading which makes it simpler to measure the shear 
response of the materials besides the fact that long time scales and very small order of output 
signals associated with the time based bulk modulus measurements, makes it very difficult to 
investigate time dependency of viscoelastic bulk modulus. Moreover most effort to study the 
bulk response of the material has been limited to temperature range close to glass transition as 
otherwise the rapid volume changes are difficult to record.   
 
In this paper, effect of time on viscoelastic bulk modulus of the Low Profile Additive (LPA) 
based Polyesters was investigated using PVT (Pressure Volume Temperature) apparatus. 
Viscoelastic Bulk creep measurements were made by pressure step experiments at different 
temperatures. Besides variation in temperature levels, magnitude of pressure steps applied was 
varied to observe the resulting influence on viscoelastic creep modulus. A significant effort was 
made to illustrate that the apparent time dependency of the bulk modulus as reported by several 
authors using pressure loading creep measurements is not correct owing to major calibration 
issue when conducting time based measurements. It was observed that the bulk modulus shows 
negligible time dependence. Bulk modulus is therefore not a viscoelastic parameter whereas the 
temperature and pressure dependence of the bulk modulus is appreciable. Finally a material 
model is developed for time, temperature and pressure dependency of the Bulk Modulus.  
Moreover a very detailed methodology for conducting creep measurements for investigating the 
time dependency using a PVT dilatometer is presented. The calibration issues associated with the 
PVT apparatus, leading to erroneous results implying an apparent time dependency of the bulk 
modulus as reported by other authors, are resolved. 
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ABSTRACT 
 
 

Nanopillars (called pillar) with nanosized diameter and microsized length can be constructed by 
chemical vapor deposition using a focused-ion-beam. For the pillar consisting of an outer 
amorphous carbon (a-C) ring and an inner gallium (Ga) core, we performed the bending test 
under the lateral load driven by the other pillar jointed together in the scanning electron 
microscope (SEM). The obtained load-deflection curves suggest that the deposited pillar has the 
size dependence to the mechanical response. The pillar with the diameter over 190 nm shows a 
wide low-hardening region after a linear response and then becomes extremely hardened at the 
finite displacement. Thus, the pillar intrinsically possesses much more flexible deformability for 
bending than expected, in contrast to tensile deformation. This size effect may be caused by the 
atomistically bonding anisotropy of bond-stretching, bond-bending, and bond-dihedral angular 
bending observed in covalent a-C.  
 
 
1. Introduction 
 
Focused-ion-beam (FIB) induced chemical vapor deposition (FIB-CVD) has distinctive 
advantages, such as much higher deposition rate, in the fabrication of complicated structures. 
Some delicate microstructures have been actually designed with this micro-beam technology [1]. 
They are composed of the deposited beam members made from amorphous carbon (a-C) and 
thus the overall structural characteristics are, in principle, determined by the mechanical behavior 
of the member. The mechanical response of the whole a-C pillar is closely related to the 
fundamental physical properties as density and Young’s modulus, and it has already been 
investigated by the dynamic resonance vibration and the quasi-static small bending with the 
piezoactuator [2-4]. It has also been reported that the a-C pillars have the cross section with a Ga 
core in nanosized diameter [5]. We here propose the simple deflection test with a rigid 
connection of two identical pillars using a focused electron beam (EB) in scanning electron 
microscope (SEM), and develop the evaluation technique for not the infinitesimal deformation 
but the large deflection of a-C pillars, which intrinsically equip the remarkable large 
deformability [6].  
 

Multiscale mechanics

263



2. Experimental Techniques 
 
       2.1  Fabrication of microstructure with a pair of a-C pillars 
 
The pillar was grown by a commercial FIB-CVD system (SMI9200, Seiko Instruments, Inc.) 
with the Ga+ ion beam. In the course of the fabrication, phenanthrene vapor (C14H10) was used as 
the supplied precursor gas. In this study, micro-framed structures for a bending experiment were 
assembled by connecting these two pillars with equal diameters and longitudinal lengths, as 
shown in Fig. 1. We call it double cantilever model (DC-model). The a-C pillars were joined at 
the intersection of two pillars by the irradiation using a focused EB in SEM (JEOL JSM5310, 
background pressure: ~10-4 Pa). The silicon nitride (SiN) cantilever coated with Au (BL-
RC150VB, Olympus Corporation, Inc.) is used in all bending tests, the spring constant of which 
is k = 0.006 N/m. The specification longitudinal length (L), width (b) and thickness (t) of the 
commercially manufactured cantilever are 100 (H10) �m, 30 (H2) �m and 0.18 (H0.04) �m, 
respectively. The flexural and tensile rigidities are herein assumed E2I2 = kL3/3 = 2.0×10-15 Nm2 
and E2A2 = 1.15 N using Young’s moduli of SiN and Au (234 GPa and 78 GPa). 
 

 

Figure 1.  A schematic illustration of deformed shape of DC-model. 

 
       2.2  Large deflection test 
 
We demonstrate large deflection tests by applying load to the above DC-model which 
encompasses the AFM cantilever specified to provide the measurable deflection. This structure 
seems to be framed rigidly because the connection is exposed to the EB for sufficiently long time. 
The large deflection tests were carried out to displace the AFM cantilever in a vertical direction. 
The displacement w1 of the horizontal pillar and displacement w2 of the cantilever were then 
measured by in-situ observation using SEM. Figures 2 show SEM images of the testing 
including the initial configuration in Fig. 2(a). The microstructure was deformed largely beyond 
a small bending by manipulating the cantilever as shown in Fig. 2(b). Subsequently, it has 
achieved the tension-dominated shape, in which two members have been linearly oriented (see 
Fig. 2(c)). It is noted that the joint connected by two pillars keeps a right angle through the 
deformation process even under large deflection. 
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Figure 2.  SEM images show the sequence of deformed configurations for a pillar with a 
diameter 210 nm. Figures (a)–(c) are the magnified views of a joint and the deflection w1 of the 
horizontal a-C pillar can be measured.  

 
 
3. Results and Discussion 
 
Figures 3 show three large deflection curves among four types of pillars (d = 160, 190, 210 and 
280 nm and l = 15 �m), which are plotted as the relationship between the normalized deflection 
of w1/l and the normalized one of w2/L. The experiments were conducted by two ways of 
bending to evaluate the elasticity of a-C pillars, one of which is only loading (open symbols) and 
the other is loading and then unloading (solid symbols). In the case of 160 nm of Fig. 3(a), the 
curve first increases linearly and then shows the hardening, which may usually be understood 
due to the nonlinear large deflection term in the structural mechanics. The large deflection curves 
indicate the weakening of stiffness in the medium deformation region after linear response, 
which is remarkably observed for the diameter over 190 nm (see Figs. 3(b) and (c)). Thus, the 
pillar has the size dependence that the bending rigidity tends to decrease after linear response as 
increasing the diameter. We have already suggested that the loss of rigidity is caused by change 
of deformation mode of the a-C in ref. [6] where the pillar with diameter of 234 nm was 
employed. That is, the weakest torsional rotation and bending of the covalent molecular system 
may be prior operative after the revertible linear response. The present results give a new fact of 
the size dependence to the loss of rigidity. Meanwhile, the increasing diameter introduces 
decrease of density of the whole pillar [6]. Thus, this size dependence is linked to the amorphous 
covalent molecule system of carbon and also the density.  
 
4. Conclusions 
 
We have proposed the experimental technique called double cantilever model to measure large 
deflection of the pillar manufactured by FIB-CVD. Two identical pillars with the same diameter 
and the same length are rigidly jointed at the interconnected point by the focused electron beam. 
Results from the proposed testing verified the size dependence of the deposited pillar to the 
mechanical response. The pillar with diameter over 190 nm exhibits loss of stiffness in the 
medium deformation region after linear response. Some considerable factors of the stiffness 
weakening are the properly atomistic deformation manner with covalent interaction based on sp2-
sp3 bonding and also the density of the pillar. 
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Figure 3.  Relationship between normalized deflections of the cantilever and one of the pillar for 
some diameters (160, 190 and 210 nm). The open symbol represents an experimental value for 
only loading and the solid one represents the value of a loading and unloading test. The solid 
curve here is the cubic polynomial through the origin, fitted by all experimental data.  
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ABSTRACT 
 
 

Strength of the nanoscale multilayed composites is strongly controlled by the interface 
mediated slip transfer reaction. In this paper, by using the nudged elastic band (NEB) method, 
we investigate the 3D reaction pathway where the screw dislocation inserted in the Cu layer 
penetrates into the Ni layer across the (001) interface. The quantitative values of the activation 
parameters (the activation energy and activation volume) that involve the transmission for the 
leading partial dislocation are determined using atomistic approach. When the activation energy 
is 0.68 eV, the corresponding activation volume is about 150b3. The dependence of the activation 
parameters on the film thickness is also considered. Due to the Koehler force effect, the 
activation energy decreases as the film thickness decreases.  
 
 
1. Introduction 
 

Epitaxial interfaces act as the source of the slip resistance. In particular, recent experiments 
suggested that the strength of Cu/Ni nanolayered composites is strongly related to the stress that 
a single dislocation needs to transmit the interface [1]. Much effort has been devoted to 
understand the details of the slip transfer events, revealing that the interface barrier for slip is 
attributed to the several factors, such as elastic modulus mismatch, lattice mismatch and core 
structure changes at the interface [2,3].  

Although a molecular dynamics (MD) is an effective tool to probe an atomic scale event, to 
predict the lower-bound threshold stress required for the slip transfer reaction is a crucial task. 
Since a slip transfer event may be the stress-mediated thermally activated process, a MD 
generally suffers from the limitation to directly access the event which takes place at the time 
scale of seconds or hours. 

Recently, Zhu et.al [4] demonstrated that a reaction pathway analysis is critical for the 
quantification of thermally activated processes and the atomistically calculated activation 
parameters for the slip transfer in the nano-twined Cu can be directly connected with the 
experimental measurements. In this study, we apply the reaction pathway analysis to the slip 
transfer event at the Cu/Ni coherent interface and evaluate the activation energy for this event. 
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2. Molecular Dynamics Modeling 
 

Fig. 1 shows the atomic configuration of dislocation-interface interaction model. Only defect 
atoms are visualized by computing the central symmetry parameter. A fcc Ni crystal is placed 
above a fcc Cu crystal. The x, y and z axes of the simulation cells are [110], [ 101 ] and [001] 
direction for the Cu and Ni lattice. The system contains 480000 atoms and the cell sizes are 30.3 
nmE12.6 nmE14.3 nm. A Ni film thickness h is 7.1 nm. Due to the 2.7% lattice misfit between 
Cu and Ni, both lattices are pre-strained to create a coherent interface. The coherency stresses 
acting in the Cu and Ni lattice are -2.2 GPa and 2.2 GPa, respectively. Then, a screw dislocation 
with the burgers vector b=a/2[110] is introduced in the Cu crystal by displacing the atoms 
according to the elastic dislocation displacement fields. Periodic boundary conditions are applied 
along the dislocation line, while the atoms within the outermost four layers from the y and z faces 
are fixed. The structural relaxation using the generalized EAM potentials [5] leads to the 
dissociation of the screw dislocation b into two Shockley partial dislocations of b1=a/6[121] 
(leading partial) and b2=a/6[211

_

] (trailing partial), as shown in Fig.1.   
Toward the reaction pathway analysis, we determine the athermal stress ath� , which is a critical 

value when a dislocation spontaneously transmits across the interface without thermal fluctuation. 
Our MD computations show that the 2D leading and trailing partial dislocations completely 
overcome the Cu/Ni interface at the resolved shear stress of 1.06 GPa.  
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Figure 1. Atomistic model of the dislocation-interface interaction in coherent Cu-Ni system. 
 
 
3. Reaction Pathway Analysis 
 

At the various load below ath� , the free-end nudged elastic band (FE-NEB) method [4] is used to 
evaluate the minimum energy path (MEP) and activation energy for the slip transfer reaction. In 
FE-NEB computation, the initial state is chosen where the leading partial b1 is blocked at the 
interface, while the trailing partial b2 is still located in the bulk Cu. On the other hand, the final 
state is chosen where the two partials are completely located in the bulk Ni. 
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At the load below 0.9 ath� , we observed two energy barriers along the MEP, which correspond 
to the reaction path involving the transmission for the leading partial b1 and trailing partial b2, 
respectively. We found that the activation energy associated with the leading partial b1 is higher 
than that with the trailing partial b2. In the range of 0.9 ath� <� < ath� , the energy barrier for the b1 

transmission was observed and the energy barrier for b2 was vanished. Thus, the present study 
put an emphasis on the investigation about the transmission of the leading partial b1 only. 

Fig. 2(a) shows the MEP for the transmission of the leading partial b1 at the applied resolved 
shear stress of 0.81 GPa. In Fig. 2(b), the atomic view of the saddle configuration is shown. The 
part of the straight leading partial extends into the Ni side in the forward and lateral direction. At 
the saddle point, the magnitude of the extensions in the forward and lateral direction is about 1 
nm and 22 nm, respectively.  The corresponding activation energy E*  at this shear stress is 0.68 
eV. 
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Figure 2. (a) The minimum energy path for the slip transfer of the leading Shockley partial 
dislocation b1 at the applied resolved shear stress of 0.81 GPa. (b) The corresponding saddle 
configurations. 
 
 

 In. Fig. 3, we present the dependence of the activation energy on the resolved shear stress.  
According to transition state theory, the frequency of the transmission event can be given by 

)exp( TkEQ Bact*��9 , where Q is the constant and TkB is the thermal energy. Assuming that 
the activation energy E*  which gives the value of 9 =1 s-1 at room temperature is about 0.7 eV 
[4,6], we find that the stress above 85% of the athermal limit should be given in order to achieve 
the transmission event.  

The ��*E relation in Fig.3 can be generalized by using the following equation 
n

athAE )1( ����* [6]. Here, the parameters A=4187.5 eV, n=5.24 and ath� =1.19 GPa are 
obtained. In addition, the activation volume, which is the derivative of activation energy with 
respect to stress, is computed. It is found that when the activation energy is 0.68 eV, the 
corresponding activation volume is about 150b3. 

The influence of the film thickness on the activation energy is also considered.  To this end, 
the NEB calculations for the multilayered Cu/Ni systems with an individual thickness h =1.8 nm 
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and h = 3.6 nm are separately carried out. The results are shown in Fig. 3. Due to the increase of 
the Koehler effect, the activation energy decreases as the film thickness decreases.  Thus, the 
threshold resolved stress required for the slip transfer also decreases as the film thickness 
decreases. As Misra et. al suggested [1], if the yield stress of Cu/Ni nanolayered composites is 
characterized by the stress that a single dislocation needs to transmit the interface, our NEB 
results predict that the yield stress also decreases as the film thickness decreases. This tendency 
is good agreement with the experimental results [1]. 
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Figure 3. Dependence of the activation energy on resolved shear stress for the transmission of the 
leading Shockley partial dislocation b1. 
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ABSTRACT 
 
A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the strain-rate 
by more than two orders of magnitude during transient creep tests, to reach a secondary creep 
regime at a strain which is systematically of 1%. We use a recent (so-called ``affine'') version of 
the self-consistent mean-field theory to model the elasto-viscoplastic behavior of ice. The model 
aims at bridging scales between the rheology of single grain and the one of polycrystals, by 
evaluating the intergranular interactions. It takes into account the long-term memory effects, 
which manifests itself by the fact that local stress and strain-rate in grains depend on the whole 
mechanical history of the polycrystal. It is shown that the strong hardening amplitude during the 
transient creep is entirely explained by the stress redistribution within the specimen, from an 
almost uniform stress distribution upon instantaneous loading (purely elastic response) to strong 
inter- and intra-phase heterogeneities in the stationary regime (purely viscoplastic response). The 
experimental hardening kinetic is much too slow to be explained by the same process; it is 
attributed to the hardening of hard glide slip systems (prismatic slip) in the transient regime. 
Moreover, the model very well reproduces the permanent creep-rate of several highly anisotropic 
specimens of the GRIP ice core (pronounced crystallographic textures), when accounting for a 
single grain rheology that well matches the experimental one. Our results are consistent with 
recent findings concerning dislocation dynamics in ice. 
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ABSTRACT 
 

This investigation promotes the design of emulsion explosives and the development of 
detonation theory on a microscale. As the total composition of oxidizing and reducing elements 
of the reactants leave related to the thermochemistry of the system, the computational details of 
predicting the temperatures of detonation were introduced. It was found that a significant 
improvement was achieved in the emulsion explosives with an aquiferous system. An 
improvement in the detonation synthesis of nano-lithium and zinc oxides is due to the formation 
of an activated matrix of the metal nitrates’ oxidizer with the corresponding fuel. Temperatures 
of detonation of emulsion explosives and explosive formulations are predicted using 
thermochemistry information. XRD analysis shows that nanoparticles of lithium and zinc oxides 
can be produced from detonation of emulsion explosives due to fast quenching as well as 
appropriate detonation velocity and temperature. 
Keywords: Lithium and zinc oxides, emulsion explosive, XRD, temperature of detonation 
 
 
1. Introduction 
 
Water-contained explosives developed in the late 1950s became quite widespread in their use 
from the mid 1960s [1]. Mohammad Hossein Keshavarz [2] introduced a simple procedure by 
which detonation pressure of CaHbNcOd explosives can be predicted from a, b, c, d and 
calculated gas phase heat of formation of explosives at any loading density without using any 
assumed detonation products and experimental data. This class of explosive has now mainly 
replaced traditional nitroglycerine based dynamites and gelignites for commercial blasting. 
Emulsion explosives offer many advantages over dynamites including being more economical, 
safer to handle and relatively insensitive to mechanical initiation and having a good shelf life. 
They are composed of aqueous solutions of inorganic oxidizing salts, generally ammonium 
nitrate, held in a gelatinous matrix, using gelling agents such as highly branched polysaccharides, 
e.g. guar gum and starch. Density, and hence sensitivity, is controlled using a variety of materials 
including hollow glass microspheres, and surfactants such as laurylamine acetate to entrap air 
into the explosive matrix. Further oxidants including lithium nitrate and zinc nitrate are 
suspended in the matrix, along with combustible materials such as oil and paraffine. 
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2. Computational Details  
 

If we consider the water of detonation products in liquid state, 
N = (5.42 + 7.04 + 0.18)/1000= 12.64/1000 = 0.01264 (mol/g) 
M = (5.42 44 + 7.04 28 + 0.18 32)/12.64 = (238.48 + 197.12 + 5.76)/12.64 

= 34.92 (g/mol) 
Q = Qv [H2O (l)] /4.18 = 3825.46 /4.18 = 915.18 (cal/g) 

259.225.3091.501264.018.91592.3401264.0 2
1

2
1

�EE�EE�>  
When ρ = 845 kg.m-3, theoretically 

� � 186.3099.2503.101.1845.03.11259.201.1 2
1

�EE�E�E�D  (Km/s) 
52.2259.2845.056.1 2 �EE�CJP  (GPa)  

Subscript e and pr mean the experimental and predicting values of detonation parameters 
respectively. 

De = 1743 m/s,  
If we consider the water of detonation products in liquid state, 
Qe = De

2 Q/D2 = 17432 3825.46/31862 = 1144.95 KJ 

3

332

1069.262
1095.11441069.26402.221802.2218

�

�

EE
EEEE���

�prt
 + 298.15  

= 811.19K 
If we consider the water of detonation products in vapor state, 
N = (5.42 + 7.04 + 0.18 + 23.33)/1000= 35.97/1000 = 0.03597 (mol/g) 
M = (5.42 44 + 7.04 28 + 0.18 32 + 23.33 18)/35.97 = 23.94 (g/mol) 
Q = Qv [H2O (l)] /4.18 = 2861.44 /4.18 = 684.56 (cal/g) 

604.416.2689.403597.056.68494.2303597.0 2
1

2
1

�EE�EE�>  
� � 548.4099.2146.201.1845.03.11604.401.1 2

1
�EE�E�E�D  (Km/s) 

13.5604.4845.056.1 2 �EE�CJP  (GPa)  
Qe = De

2 Q/D2 = 17432 2861.44/45482 = 420.28 KJ 

3

332

1043.2362
1028.4201043.236455.862550.862

�

�

EE
EEEE���

�prt
 + 298.15  

= 503.17 K 
When the mass fraction of EPS is 3%, the detonation reaction equation is as follows. 

1.33LiNO3 + 1.45Zn (NO3) 2·6H2O + 4.85NH4NO3+ 0.05C24H44O6 + 0.15C18H38 + 0.28C8H8→ 
0.67Li2O + 1.45ZnO + 3.84CO2 + 6.97N2 + 23.47H2O +2.30CO 

Qv [H2O (l)] = 3611.39 kJ + (3.84 + 6.97 + 2.30)  8.314 10-3 298.15 kJ  
= 3643.89 kJ  

3

332

1072.262
1089.36431072.26428.220928.2209

�

�

EE
EEEE���

�t
 + 298.15  

= 1617.71 K 
If we consider the water of detonation products in vapor state, 

Qv [H2O (g)] = 2583.40 kJ + (3.84 + 6.97 + 23.47 + 2.30)  8.314 10-3 298.15 kJ  
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= 2674.08 kJ 

3

332

1072.2372
1008.26741072.237468.84568.845

�

�

EE
EEEE���

�t
 + 298.15  

= 2315.87 K 
N = (3.84 + 6.97 +2.30)/1000= 13.11/1000 = 0.01311(mol/g) 
M = (3.84 44 + 6.97 28 + 2.30 28)/13.11 = 32.69 (g/mol) 

  Q = Qv [H2O (l)] /4.18 = 3643.89 /4.18 = 871.74 (cal/g) 

214.253.2972.501311.074.87169.3201311.0 2
1

2
1

�EE�EE�>  
When ρ = 686 kg.m-3, theoretically 

� � 843.2892.1488.101.1686.03.11214.201.1 2
1

�EE�E�E�D  (Km/s) 
63.1214.2686.056.1 2 �EE�CJP  (GPa)  

Yet, De (subscript e means the experimental value of detonation parameters) = 1806 m/s,  
If we consider the water of detonation products in liquid state, 
Qe = De

2 Q/D2 = 18062 3643.89/28432 = 1470.44 KJ 

3

332

1072.262
1044.14701072.26428.220928.2209

�

�

EE
EEEE���

�prt
 + 298.15  

= 958.45 K 
If we consider the water of detonation products in vapor state, 
N = (3.84 + 6.97+ 23.47 + 2.30)/1000= 36.58/1000 = 0.03658 (mol/g) 
M = (3.84 44 + 6.97 28 + 23.47 18 + 2.30 28)/36.58 = 23.26 (g/mol) 
Q = Qv [H2O (l)] /4.18 = 2674.08 /4.18 = 639.73 (cal/g) 

459.429.2582.403658.073.63926.2303658.0 2
1

2
1

�EE�EE�>  
� � 035.4892.1112.201.1686.03.11459.401.1 2

1
�EE�E�E�D  (Km/s) 

27.3459.4686.056.1 2 �EE�CJP  (GPa)  
Qe = De

2 Q/D2 = 18062 2674.08/40352 = 535.70 KJ 

3

332

1072.2372
1070.5351072.237468.84568.845

�

�

EE
EEEE���

�prt
 + 298.15  

= 846.95 K 
 
 
3. Conclusions 
 
A computational methodology has been developed to predict the heats of detonation for 
emulsion explosive formulations. The methodology is based on a simple scheme to calculate 
detonation properties. The method assumes that the heat of detonation of an explosive compound 
of composition CaHbNcOdLieZnf can be approximated as the difference between the heats of 
formation of the detonation products and that of the explosive formulation, divided by the 
formula weight of the explosive. The detonation products are assumed to correspond to the H2O–
CO2–C–Li2O–ZnO arbitrary. For emulsion explosives, this methodology presented here has the 
advantage that neither heats of formation nor densities need to be measured or estimated to 
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calculate the heat of detonation of an explosive. The calculations presented herein show that this 
methodology to predict heats of detonation of emulsion explosives and explosive formulations is 
a reasonable computational tool to be used in the rapid assessment and screening of notional 
energetic materials. The detonation products were identified from X-ray powder diffraction 
(XRD) patterns and scanning electron microscopy (SEM) measurements. XRD analysis shows 
that nanoparticles of lithium and zinc oxides can be produced from detonation of emulsion 
explosives due to fast quenching as well as appropriate detonation velocity and temperature. 
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ABSTRACT 
 
 

The micro-macro mechanical approaches offer new insights of the material behavior of particle 
and fibre reinforced composite and may result in new procedures to develop realistic material 
models for design and optimization purposes. The conventional numerical homogenization 
technique is employed to evaluate the effective material properties and influence of interphase of 
complex microstructured three phase composites like transversely randomly distributed fiber and 
randomly distributed spherical particle composites. The consideration of randomly distributed 
inclusions opens new possibilities to investigate more realistic composites which incorporates 
automatically such effects like the influence of different distances between the particles. under 
the assumption of small strains and elastic material behavior. In order to validate our developed 
numerical homogenization tools, comparisons are made between our numerical results and 
results reported in literature for uni-directional regular arrangement of fiber composites. The 
fibre/ inclusion material is taken as SiC and the matrix is the Al alloy. It is seen from the finite 
element studies, that the representative volume element (RVE) containing multiple inclusion of 
spherical and cylindrical shape with ordered arrangement, the effective property increases with 
decrease in size of inclusion at the particular volume fraction with an exception of RVE 
containing only 2 inclusions. However, the obtained results are verified with the results those 
obtained by analytical and available in literature. 
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ABSTRACT 
 
 

A generalized self consistent approach, recently proposed by Jiang and Weng [1] for 
investigating the properties mechanical of nanocrystalline (NC) materials, is revisited and 
reformulated following an incremental scheme. The NC material is modeled as composed of 
spherical randomly distributed grains with a lognormal grain size distribution. Each oriented 
grain and its immediate grain boundary form a pair, which in turn is embedded an infinite 
effective medium with a property representing the average orientation of all these pairs. The 
plastic deformation of the grain phase takes into account the dislocation glide mechanism 
whereas the boundary phase is modeled as an amorphous material.  
 
 
1. Introduction 
 
NC and utrafine-crystalline materials (UFG) are research topic subjects that bridge several fields, 
from materials science to mechanical engineering since more than a decade [2]. This type of 
materials processes superior mechanical strength over their microcrystalline counterparts but 
limited plastic deformation. Both experimental and theoretical investigations show deformation 
mechanisms being dominated by the grain boundary phase activity. More generally, when the 
grain size decreases down to about tenth of nanometers, the yield strength increases linearly with 
the inverse square root of the grain size as described by the Hall-Petch law: 1/ 2

0y kD� � �� � , 
where 0� is the frictional stress, k the Hall-Pecth slope and D the mean grain size. Nevertheless, 
is should be noticed that the mechanical properties of a given material depend on the as-
processed microstructure characteristics (such as the grain size distribution, the crystallographic 
texture, the grain boundary structure, the grain shape etc…) and not only on the mean grain size. 
Most of these microstructures characteristics are often out of reach experimentally. In the same 
time, numerical simulations are good means for predicting, optimizing, and controlling the 
processing of material. Jiang and Weng developed a generalized self consistent polycrystal 
model [1], based on Christensen and Lo’s solution [3] and Lou and Weng’s solution [4] to 
predict the influence of the as processed microstructure on the subsequent mechanical behavior. 
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In doing so, they considered solely the average grain size as structural parameter. However, 
experimental investigations do demonstrate that the grain size is dispersed in an interval within 
the lognormal distribution. Taking into account the lognormal distribution and the dispersion 
around the mean grain size allows to better simulating, with more accuracy, the behavior of the 
bulk NC or UFG materials and constitutes the goal of this study presented here.  
   
 
2. The generalized self-consistent approach 
 
In this paper, the generalized self-consistent model, recently proposed by Jiang and Weng [1], is 
rewritten following an incremental small strain scheme. The representative volume element 
(RVE) of this micromechanical model is an oriented grain identified by Eulerian angles 

1 2( , , )> @ >  and its immediate boundary forming a pair embedded in a homogeneous equivalent 
medium. Under the macroscopic Cauchy stress rate ij�� , the plastic deformation of the grain is 
governed by its crystallographic slips systems. However the stress and strain of the surrounding 
grain boundary, modelled as an amorphous material, are closely related to the plastic strain of its 
enclosed grain. The nonlinear problem can be resoled by superposition of two linear auxiliary 
problems as schemes in Fig 1.   
 
 
 
 
 
 
 
 
 
 

Figure 1. The decomposition scheme of the initial non-linear (A) problem into two linear 
auxiliary problems according to Christensen and Lo (B) and Lou and Weng (C). 
 
The stress-strain relation of each oriented grain is given by 

 ( ) ( ) ( ) ( ) ( )g g g s s
ij ijkl kl kl

s
C� 0 9 �� �

� � 

� �

��� �      (1) 

where ( )g
ijklC  is the crystal elasticity tensor, ( )s�� is the shear rate, ( )s

kl9  is the Schmid factor tensor of 
the slip system s, defined as the tensor product of the unit slip direction tensor and the slip plane 
normal tensor of the considered slip system. 
 
The plasticity of the grain-boundary phase is isotropic and incompressible (p=0). The yield 
function described by [5]: ( ) ( ) ( )( ) gbngb gb p gb

e y gb eh� � 0� �  where ( )gb
e� , ( )p gb

e0 and ( )gb
y�  are the Mises’ 

effective stress, effective plastic strain and the yield strength initial of grain boundary 
respectively. The parameters gbh  and gbn are the material constant related to the grain boundary. 
The grain boundary thinness was given a value of 7=1 nm [1]. 
 

(B) (C) (A) 
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3. Results and discussions  
 
The application of the present model for the copper processed by inert gas condensation method 
[6] was presented in this section. Fig. 2a compares the true stress-true strain curve obtained from 
experimental tensile test at room temperature at the strain rate of 10-4s-1 and the one of the 
current model prediction. Three types of material, corresponding to three different mean grain 
sizes of 49 nm, 110 nm and 20 μm, were studied. It is clear that the flow stress depends on the 
grain size and the simulation compares fairly well with the experimental results.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. (a) Calculated (mod) and experimental (ex) stress-strain relations of copper with 

different grain sizes. (b) Predicted flow stress at 0.2% plastic strain as a function of mean grain 
size for different relative dispersion *D/D.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Map for the effective stress of the grain phase (at the overall axial plastic strain 
level Ep=1%) in terms of the orientation of the grain (random orientations) at mean grain size 
Dmean=49 nm and different relative dispersion. 

 
A procedure is used to generate different discrete lognormal distribution with given means and 
dispersions [7]. The flow stresses at 0.2% plastic strain are plotted in Fig. 2b as a function 

(a) (b) 

D=49 nm, *D/D=0 D=49 nm, *D/D=6 
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of 1/ 2
meanD� . The relative dispersion *D/D takes the values 0, 1, 2, 4, 6 and all the curves appear to 

be quite linear. Our results, like those presented by Berbenni et al [7], display a unique effect of 
the grain size dispersion which becomes more significant at the NC regime (49 nm). 
 
Fig. 3 illustrates the evolution of effective stress of the grain phase (which is defined 

as
1/ 2

( ) '( ) '( )3
2

g g g
e ij ij� � �� ��  


� �
) at the overall axial plastic strain level Ep=1% taking into account the 

initial grain orientation, different mean grain sizes and associated relative dispersions. It can be 
seen that in the all cases, the effective stress of the grain phase is heterogeneous and the high 
effective stresses are located at 1 2( , )> >  = (50°,50°), (50°,125°), (125°,50°) and (125°,125°). In 
the case of (Dmean=49nm, *D/D=6), the effective stress exhibits more heterogeneity than the 
other cases with the presence of additional high effective stress located at 1 2( , )> >  = (0°,110°), 
(40°,160°), (100°,0°), and (130°,80°) (see Fig. 3b). Comparing the effective stress in the case of 
the coarsest mean grain size Dmean=20μm with no dispersion (*D/D=0) to the case of a broader 
dispersions like *D/D=6, the resulting stress fields are very close (in position and levels) (not 
show here). As for the NC sample (Dmean=49nm), a loss of the effective stress fields is found 
when the two extreme dispersions *D/D=0 and *D/D=6 (Fig. 3a and 3b) are compared. These 
results confirm that the effect of the grain size dispersion on the effective stress fields at Ep=1% 
becomes more significant at finest mean grain sizes. 
 
As in previous work [7], we have numerically investigated the hypothesis that broad dispersions 
tend to reduce the grain size dependence whereas the individual grain behaviour is grain size 
dependent.  
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ABSTRACT 
 
 

Evaluation of effective thermal conductivities of carbon-carbon (C/C) composites using the 
Mori-Tanaka (MT) averaging scheme is presented. Two step homogenization approach is 
adopted both at the level of fiber tow and the level of plain weave textile ply.   
 
 
1. Introduction 
 
Carbon-Carbon plain weave fabric composites belong to an important class of high-temperature 
material systems. An exceptional thermal stability together with high resistance to thermal 
shocks or fracture due to rapid and strong changes in temperature have made these materials 
almost indispensable in a variety of engineering spheres including aeronautics, space and 
automobile industry. While their appealing thermal properties such as low coefficients of thermal 
expansion and high thermal conductivities are known, their prediction from the properties 
supplied by the manufacturer for individual constituents is far from being trivial since these 
systems are generally highly complicated. In the last decade, effective media theories, widely 
used in classical continuum micromechanics, have been recognized as an attractive alternative to 
time-consuming finite element based methods.  
 
 
2. Theoretical formulation 
 
Assuming steady state conditions the estimates of effective thermal conductivities follow from 
the solution of a heat conduction problem which can be described by the Laplace equation. The 
solution of this equation is combined here with the Mori-Tanaka method to provide for the 
homogenized material properties of C/C textile composites. In view of this approach the local 
gradient ( ) is split into the average gradient in matrix ( ) and the fluctuation part ( ) 
 

            (1) 
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Note that the second order tensor  and the vector  are analogous to the Eshelby tensor and 
transformation strain, respectively, for the elasticity problem. Explicit solution of the  is 
expressed in [1]. The Mori-Tanaka estimates are then provided by 
 

   (2) 
 
where indexes  refer to individual constituents with  related to matrix phase and 

 are the volume fractions. The concentration factor  can be determined as 
 

      (3) 
 
The expression above provides two possible approaches for the determination of the effective 
material parameters, one-step or multi-step method. The first treats all inhomogeneities 
simultaneously. The second one adopts the procedure where each inclusion is embedded into a 
new homogenized matrix in a certain hierarchical manner. The latter approach is employed 
henceforth. 
 
 
3. Effective properties 
 
As already mentioned, C/C plain weave composites are used as a reference material. The 
properties and dimensions of each constituent are taken from [2, 3].  
 
 

Table 1. Phase thermal conductivities [Wm-1K-1] 
Material Thermal conductivity 

Carbon fibers (0.35; 0.35; 35) 
Carbon matrix 6.3 

Voids filled with air 0.02 
 

1.1 Micro scale 
 
The basic structural element is the fiber tow with significant amount of transverse cracks and 
voids resulting in porosity up to 15% (Fig. 1a). Tab. 2 summarizes effective thermal 
conductivities derived with the help of the Mori-Tanaka method. As expected, a reasonably good 
agreement with finite element simulations presented in [3] was achieved.  
 

Table 2. Phase thermal conductivities [Wm-1K-1] 

Analysis Material Conductivity Fiber Inhomogeneity 
Multi-step MT    
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a) b) 
Figure 1.: (a) Micro scale, (b) meso scale 

 
 

1.2 Meso scale (fiber tow) 
 
The material properties determined on micro-scale are subsequently used on meso-scale as a 
basic step for a multi-step procedure. First, the wavy, generally nonuniform, fiber tow path is 
taken into account by employing the orientational averaging introduced in [3]. In this method it 
is possible to employ either a uniform distribution (Tab. 3) or real histograms of inclination angle 
[3]. To further grasp an imperfect nature of C/C composites three different types of PUCs are 
considered (Fig. 1b), see also [2, 3] providing real dimensions of the fiber tow for MT 
predictions. In addition, an optimal shape of an equivalent ellipsoidal inclusion addressed in [3] 
is adopted.  
 
 

Table 3. Effective thermal conductivities [Wm-1K-1] (meso scale) 

Analysis Type 
Tow Air voids Conductivity 

Mutual 
ratio Vol. Mutual ratio Vol. Longitudinal Transversal 

1st step Opti -
mized 

092.0
;486.0

;1
 

 

 

0.648 - 8.25 2.70 
0.800 8.70 2.29 

2nd step 

PUC 1 
0.800 

- - 9.29 2.21 
PUC 2  0.097 8.19 1.77 
PUC 3  0.141 7.70 1.60 
PUC 1 

0.648 
- - 8.73 2.56 

PUC 2  0.097 7.71 2.02 
PUC 3  0.141 7.26 1.82 

 
Note, that on the micro-scale the application of the Mori-Tanaka method is particularly simple 
since in both homogenization steps, when limiting our attention to transverse cross-section only, 
the underlying matrix is isotropic. This, however, is no longer true if performing the same 
analysis on the meso-scale, where the second homogenization step calls for the solution of an 
isotropic (air) inclusion in an orthotropic matrix [4]. The corresponding homogenized properties 
are summarized in Tab. 3. In order to have comparable results of material properties two values 
of tow volume are considered. The volume 0.648 belongs to a real 3D meso-structure and value 
0.800 represents the tow in 2D analysis used in [2]. 
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1.3 Textile ply 
 
The final, clearly the most simple, step requires a construction of the homogeneous laminated 
plate. The stacking sequence of individual periodic unit cells complies with that observed for the 
actual composite sample [2]. Clear evidence is available in Tab. 4 comparing the numerical and 
experimental results. 
 
 

Table 4. Effective thermal conductivities [Wm-1K-1] (textile ply) 

Method Vol. frac. of 
fiber tow 

Conductivity 
Longitudinal Transversal 

MT 0.800 8.36 1.85 
0.687 7.87 2.12 

Measured - 10.00 1.60 
 

 
5. Conclusions 
 
Two levels of hierarchy are introduced in this contribution to derive the effective thermal 
conductivities of plain weave textile composites. In this paper, the multi-step formulation as an 
efficient method based on the generalization of the Mori-Tanaka method is discussed. The results 
presented for all levels demonstrate a good agreement with FE simulations as well as with 
experimental data [2]. Variations between the data obtained for these approaches are mostly 
caused by the simplifications in [2] where the 2D samples are considered. 
 
 
Acknowledgements 
 
The financial support provided by the research project CEZ MSM 684077003 and partially also 
by the GAČR Grant No. 106/07/1244 is gratefully acknowledged. 
 
 
References 
 
[1] H. Hatta and M. Taya, “Equivalent inclusion method for steady state heat conduction in 

composites”, International Journal of Engineering Science, 24:1159-1172, (1986). 
[2] B. Tomková, M. Šejnoha, J. Novák, and J. Zeman, “Evaluation of Effective Thermal 

Conductivity of Porous Textile Composites”, Accepted for publication in International 
Journal for Multiscale Computational Engineering. 

[3] J. Skoček, J. Zeman, and M. Šejnoha, “Effective Properties of Carbon-Carbon Textile 
Composites: Application of the Mori-Tanaka Method“, Submitted to Modelling and 
Simulation in Materials Science and Engineering, http://arxiv.org/abs/0803.4166. 

 [4] T. Chen, and S.-H. Yang, “The problem of thermal conduction for two ellipsoidal 
inhomogeneities in an anisotropic medium and ist relevance to composites materials“, Acta 
Mechanica 111, 41-58, (1995). 

Multiscale mechanics

284



Failure of Granular Materials under Impact – Multiscale Simulations and 
High-Speed Experiments 

 
 

Martin O. Steinhauser 

 
 

Fraunhofer Ernst-Mach Institute for High-Speed Dynamics (EMI), Eckerstrasse 4, D-
79104 Freiburg, Germany 

Martin.Steinhauser@emi.fraunhofer.de  
 
 

ABSTRACT 
 
 
A mesoscopic discrete particle model for simulating fracture and failure of brittle materials is 
presented. The model has only a few adjustable parameters, but is able of reproducing many 
salient features of macroscopic ceramics under tensile, compressive and shock impact load [1,2]. 
Under shear load, the model exhibits the formation of macroscopic shear bands in the material. 
The particle model is discussed in detail and the results of non-equilibrium strain and shear load 
simulations are discussed in comparison to corresponding high-speed experiments. In particular, 
the explicit macroscopic experimental set-up of the edge-on-impact experiment is modeled and it 
is shown that the experimentally observed crack patterns can in principle be explained by the 
distribution of mesoscopic local differences in strength in the material. 
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ABSTRACT 
 
The nanoindentation test in the dislocation free volume of the grain in a metallic polycrystal was 
simulated by utilizing a multiscale analysis. The onset of microplasticity, associated with the 
pop-in effect identified in experimental nanoindentation tests (generation of first dislocation 
loops [1,2]), is assumed to be related to the moment of reaching the value of the ideal shear 
strength for that crystal. In particular, the influence of the compressive normal load (acting on 
the shear plane) on the ideal shear strength value [3], the three dimensionality of the 
nanoindentation test, the nonlinearity of the stress-strain relation, the orientation of relevant 
crystallographic planes and the anisotropy of elastic response of the crystal were considered in 
the model. The mechanical characteristics of the perfect metallic crystal (grain) were calculated 
by using the ab initio approach [4]. The three-dimensional isotropic FEM analysis, was used to 
simulate the development of the stress-strain field in the substrate. The computed displacement 
value was compared with experimentally measured pop-in effect in the nickel and copper 
crystals and a good agreement was obtained. The results reveal that the nanoindentation test can 
serve as a sufficiently precise tool for experimental determination of the ideal shear strength. 
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ABSTRACT 
 
 

Molecular dynamics simulations were used to investigate reactions between an ½<111>{110} 
edge dislocation with interstitial dislocation loops with Burgers vector equal to either ½I111J or 
I100J. The loop size was varied from 0.5 nm up to 8.6 nm, and simulations of both static and 
dynamic conditions were performed. The results obtained show that small loops (with size up to 
~1nm) are easily absorbed by reaction with edge dislocations, independently of their Burgers 
vector. Large loops are strong obstacles and, depending on the difference in orientation of the 
dislocation and loop Burgers vectors, are either completely or partially absorbed. The mechanism 
that provides complete absorption of relatively large loops involves propagation of the reaction 
segment, formed in favourable dislocation reaction, over the loop surface.  This motion is 
controlled by cross-slip of the screw dislocations formed in a dipole and can involve complicated 
dislocation reactions. Thus, thermally-activated glide and/or decomposition of the pinning 
segment formed in the favourable reaction determines both the absorption and critical stress, and 
therefore depends on temperature, strain rate and loop size. 
 
1. Introduction 
 
The microstructure of neutron-irradiated ferritic alloys, which are important structural materials 
for nuclear reactors, typically consists of dislocation loops, nano-voids and second-phase 
particles.  At sufficiently high doses (a few dpa), defects detectable by transmission electron 
microscopy (TEM) in bcc Fe and Fe-based alloys are mainly self-interstitial atom (SIA) 
dislocation loops (henceforth DLs) with Burgers vector, bL, equal to either ½<111> or <100> 
(see [1,2] and references cited therein).  DLs present in the matrix pin dislocations by either 
contact or elastic interaction and obstruct their motion, which leads to an increase of the yield 
stress and reduction in ductility.  Furthermore, experiments suggest that the ability of 
dislocations to absorb DLs assists in the formation of defect-free channels, which may cause 
plastic instability and loss of work hardening [3].  Rationalization of these phenomena requires 
detailed understanding of the interaction mechanisms between dislocations and radiation-induced 
defects, including dislocation loops.  This can be provided by atomic-scale computer simulations 
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using molecular dynamics (MD) techniques.  In such simulations, shear strain, �, is applied at a 

constant rate, 
.
� , to a model crystal containing a dislocation line and loop, and the corresponding 

shear stress, τ, is calculated from the reaction force exerted on the sheared boundaries by the 
crystal [4].   
A series of MD studies has been focused on the interaction of a ½<111>{110} edge dislocation 
with a periodic row of DLs in iron with bL equal to either ½<111> or <100> [5-9].  For the 
½<111> loops it has been revealed that those with bL parallel to the dislocation glide plane 
(DGP) do not offer significant resistance to the glide of an edge dislocation and can be easily 
absorbed or dragged by it: we do not consider them further here.  DLs with bL inclined to the 
DGP are attracted by an edge dislocation and react with it [7].  Small DLs (e.g. containing up to 
37 SIAs) are easily absorbed as superjogs on the dislocation line [7].  Larger ones (>100 SIAs) 
react with the dislocation to form a segment with b of <100> type, which is sessile in the DGP 
and thus pins the dislocation [5,7,8].  The reaction mechanism and the critical stress, τC, required 
to unpin the dislocation was found to depend on temperature and loop size [5-8].  The results 
obtained so far suggest that even relatively large ½<111> loops (331 SIAs) can be completely 
absorbed at sufficiently high temperature (≥300K).  Favourable reactions with <100> loops form 
½<111> segments and, in contrast with ½<111> DLs, have a wider variety of outcomes, ranging 
from no to total loop absorption by the edge dislocation [9].  Furthermore, <100> DLs with bL 
laying in the dislocation slip plane are strong barriers to dislocation glide, others are weak. 
The main goal of the present work is to review details of absorption of <100> and ½<111> loops 
by reaction with an edge dislocation and the factors controlling it.  We therefore used MD 
simulations to study reactions of the edge dislocation with DLs with size varied from 0.5nm 
(invisible in a TEM) up to 8.6nm (easily resolvable),  in both static (T = 0K) and dynamic (T = 1 
- 600K) conditions.Headings (e.g. Introduction, Procedure, Numerical Methods, Results, 
Discussion, etc.) should be in 12 pt, bold and title case. Please number headings (1., 2., 3., etc). 
Provide one space between heading and text and double spaces between text and following 
heading. 
 
2. Simulation technique 
 
The ½[111](110) edge dislocation was constructed using the model of a periodic array of 
dislocations developed in [4]. Dislocation glide occurred by applying a [111](110) shear strain at 

a constant rate,
.
� , in the range from 106 to 5×107 s-1.  The corresponding stress-strain 

relationships ( �� � ) for the dislocations reacting with loops were obtained, by estimating the 
stress acting on the fixed parts of the MD crystallite subject to displacement [4]. 

A straight edge dislocation was formed in the MD cell and the atoms relaxed to minimize 
potential energy before the DL was created, after which relaxation was performed again.  The 
model was then equilibrated at the chosen temperature, T, prior to application of shear strain.  
Circular ½<111> SIA loops were placed below the dislocation slip plane, while square <100> 
loops (with sides oriented along <110> directions) were placed so that the dislocation could 
intersect them.  The number of defects in the DLs was varied from 37 up to 1225 interstitials.  
Simulation of reactions with the largest loops was performed in crystals containing up to 6M of 
atoms, whereas reactions involving smaller loops were modelled in crystals containing ~1M of 
atoms.  The length of the dislocation line (L) was varied from 20.5nm up to 61.5nm and the 
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crystal size along [111] direction was varied from 100b up to 200b depending on the DL size and 
simulation temperature, to avoid the self interaction of the dislocation via periodic boundary 
(along [111] direction).  The size of the crystal along [110] direction was kept constant equal to 
20nm.  Thus, the dislocation density was varied in the range 1-2×1015 m-2, resulting in the 
equilibrium dislocation velocity (in the range of above-specified strain rates) ranging from 2 to 
200 m/s. 

All simulations were performed within NVE ensemble without additional temperature 
control.  MD integration time step was 5fs for simulations at 1K and 2fs at higher T.  All 
simulations used the many-body interatomic potential for Fe from [10].  Identification of the 
dislocation line and dislocation loops was realized via atomic disregistry and/or coordination 
number and/or potential energy deviation analyses [4].  For understanding of the dislocation 
reactions introduced later, the direction of the Burgers vector and line sense is as defined by the 
RH/FS convention, e.g. [11]. 
 
3. Results and discussion 
 
3.1. Absorption of ½<111> loops 
 
Two reaction mechanisms resulting in compete absorption by the edge dislocation of DLs (with 
bL equal to either ½[111]) or ½[111] inclined to the (110) glide plane) have been reported 
[5,7,8].  In one (bL=½[111] [7,9]), the reaction forms a <100> segment which pins the 
dislocation and causes a screw dipole to form on the dislocation as it bows forward under 
increasing �.  Eventually, the reaction segment glides across the loop surface and converts bL to 
½[111].  In the other (bL=½[111]) [5,9]), the <100> reaction segment splits into two screw 
segments, which also glide across the loop surface and convert it into a set of superjogs.  Here, 
we have observed both mechanisms, but complete or even partial loop absorption did not occur 
in all reactions.  As demonstrated already in [7], small ½<111> loops (up to 37 SIAs) change bL 
spontaneously to that of the dislocation and the absorption process does not require an additional 
stress.  With the interatomic potential used here, the smallest loop to undergo spontaneous 
absorption at 300K contained 37 SIAs (diameter D~1.5 nm), while additional stress was required 
for a loop containing 61 SIAs (D~1.9 nm).  Furthermore, the stress needed for the absorption 

reaction to proceed increases approximately linearly with D for simulations at the same T and 
.
� , 

as seen in Fig. 1(a) for 300K and 107s-1.  Thus, the absorption of relatively large SIA loops (1.5-
4.5 nm) occurs at high stress.  The largest loop (D=8.6nm containing 1225 SIAs) was not 
absorbed in the same simulation conditions, however, for the two screw arms forming the pinned 
dipole were seen to glide towards each other in the DGP and annihilate at �C. 
Loop size is not the only factor controlling absorption.  As noted above, absorption of relatively 
large DLs requires motion of the <100> reaction segment across the loop surface, and this occurs 
under the action of cross-slip of the two screw side arms of the dislocation as it bows out [7,8].  
The stress (say τ<100>) required for glide of the <100> segment and/or cross-slip of a screw dipole 
appears to depend on T, since a significant decrease of τC in reactions with ½[111] loops was 
observed in [8] for simulations above 300K and was found here as well (see Fig. 1(b)).  In low-T 
simulations, when τ<100> is relatively high and the reaction segment less mobile, the screw dipole 
simply extends under the applied stress.  On reaching sufficient length, the screw arms glide (in 
the DGP) under their mutual attraction, annihilate and release the dislocation from the loop.  
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Thus, the probability of absorption decreases with decreasing T at fixed D and 
.
� .  Furthermore, 

it is observed that the probability decreases with increasing 
.
� .   This is due to a combination of 

the low mobility of the <100> reaction segment and rapid elongation of the screw dipole, which 
allows the two screw dislocations to reach a length when they annihilate by glide in the DGP 
rather than cross-slip.  
Below we present a few illustrative examples.  Reactions with a ½[111] loop of 169 SIAs 

(D=3.2nm) at 
.
� =107s-1 result in complete absorption for T > 100K.  In low-T or simulations, the 

dipole annihilates via glide of the screw dislocations, with the result that no absorption occurs.  
The configuration of the dislocation and loop at τC for T=0K (static simulations) is shown in Fig. 
2(a).  Note the large difference in τC for the reactions at 0 and 300K in the plot of Fig.1(b).  For 
large loops, τ<100> is sufficiently high for the screw dipole to grow and reach the critical length 
for annihilation even at relatively high temperature (e.g. 300K).  The situation where glide of the 
<100> reaction segment and closure of the screw dipole by glide of screw arms are competing 
processes occurs for a 4.6nm ½[111] DL (containing 360 SIAs) at 300K.  The dislocation 

configurations at τC and the stress-strain curves obtained at different 
.
�  are presented in Fig.3.  It 

is clear that the dipole is much shorter at τC for lower strain rate (Fig.3(a)), where complete 

absorption occurs.  Reactions at higher 
.
�  lead to partial absorption only.  Again, there is a 

significant difference in τC for low and high 
.
� .  

 
3.2. Absorption of [001] loops by the edge dislocation 
 
Let us first describe the observed absorption mechanism and then discuss factors controlling it.  
Visualization snapshots extracted from MD simulations showing the dislocation-DL 
configurations with increasing time for reactions involving [001] loops containing 169 SIAs are 
presented in Fig. 4.  The square loops have [110] and [110] sides.  The uppermost loop segment 
has direction [110] and lies in the dislocation slip plane in Fig.4(a1) and the centre of the loop is 
located in the dislocation slip plane in Fig.4(b1).  The interaction process in these reactions is as 
follows. 
a) The dislocation is initially attracted towards the loop and undergoes a reaction (energetically-
favourable according to Frank's rule) with the upper side of the loop to form a ½[111] segment 
(Fig.4(a2)).  This reaction segment propagates across the loop surface (Fig.4(a3)), converting bL 
to ½[111], so that the loop is incorporated in the dislocation line as a set of superjogs (Fig.4(a4)).  
The superjogs rearrange into a U-shape with segments aligned along <112> directions and the 
dislocation continues to glide. 
b) The dislocation is initially attracted towards the loop to form a short ½[111] reaction segment 
(Fig.4(b2)) with one of the [110] loop sides  direction perpendicular to the DGP.  bL of the larger 
part of the loop then converts into ½[111] orientation, resulting in the configuration shown in 
Fig.4(b3).  The latter consists of a set of edge and screw segments (labeled ½[…]s in Fig.4(b3)) 
connecting two arms of the edge dislocation.  The newly-created screw segments, formed by 
splitting of the [010] segment, glide across the loop surface removing the [001] segment and 
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forming the configuration shown in Fig.4(b4).  The latter is incorporated on the edge dislocation 
as a set of glissile ½[111] superjogs (see Fig.4(b5)). 
The critical stress, τC, and the fraction of interstitials absorbed in the reactions above depend on 

loop size and T (and presumably on 
.
� , but this has not been studied as yet).  The size-

dependence of τC for the reaction in Fig.4(a) for T=300K and 
.
� =107s-1 is shown in Fig.1(a). τC 

increases linearly with the D to reach 470MPa for the largest size considered (7nm), which is 
close to the value for the ½[111] DL of 8.5nm size.  (Both of these loops contain approximately 
the same number ~1225 of SIAs.)  However, despite the same critical stress, the [001] loop was 
completely absorbed in the simulations whereas the ½[111] loop was not.  

The T-dependence of τC for the reaction at 
.
� =107s-1 with the [001] loop of 3nm size shown in 

Fig.4(a) is presented in Fig.1(b), where τC is seen to reduce from 560MPa at T=0K (static 
simulations) to 70MPa at 300K.  Further increase of T to 600K does not change τC.  Complete 
absorption of the loop was observed in reactions modelled above 100K.  Below 100K, the 
formation and glide of relatively long screw segments occurs, as in the cases above for loops 
having bL = ½[111] or ½[111].  The dislocation-DL configurations just before glide of the screw 
arms at τC are compared in Fig.2 for the ½[111] and [001] loops (each containing 169-SIAs, 
simulated at 0K).  Thus, in low-T simulations, release of the dislocation is controlled by glide of 
the screw dipole segments, which occurs prior to motion of the ½<111> reaction segment, which 
also controls absorption.  Hence, the mechanisms of absorption are similar for the ½<111> and 
<100> dislocation loops.  We note, however, that the stress at which a ½<111> reaction segment 
glides over <100> DL surface may be significantly different from that at which a <100> segment 
glides over a ½<111> loop. 
 
4. Concluding remarks 
 
The simulation of reactions between edge dislocations and dislocation loops with bL=1/2<111> 
or <100> has shown the following.  
(i) Small loops (with size up to ~1nm) are easily absorbed by reaction with edge dislocations, 
independently of their Burgers vector.   
(ii) Large loops are strong obstacles and, depending on the difference in orientation of the 
dislocation and loop Burgers vectors, are either completely or partially absorbed.  The critical 
stress and reaction product depend on T and are controlled by the mobility of either the 
dislocation segment formed by a favourable DL-dislocation reaction or screw dislocations in a 
dipole drawn out on the pinned dislocation.   
(iii) In general, the mechanism that provides complete absorption of relatively large loops 
involves propagation of the reaction segment over the loop surface.  This motion is controlled by 
cross-slip of the screw dislocations formed in a dipole and can involve complicated dislocation 
reactions.  (Examples of different reactions can be found in [9].) 
(iv) Thus, thermally-activated glide and/or decomposition of the pinning segment formed in the 
favourable reaction determines both the absorption and critical stress, and therefore depends on 
temperature, strain rate and loop size. 
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(v) Irrespective of whether loop absorption on the dislocation is complete or not, the absorbed 
interstitials form a set of glissile ½<111> superjogs, so that after unpinning the edge dislocation 
moves under approximately the same stress as a perfect straight dislocation. 
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ABSTRACT 
 
 

In this work atomistic kinetic Monte Carlo is applied to simulate thermal ageing of binary Fe-Cr 
alloys, where a description of the atomic interactions is provided by semi-empirical interatomic 
potentials, fitted to density functional theory data. We performed our studies varying the Cr 
content in the range of 12-21 at.% Cr in the temperature range 600-900K. The evolution of the 
phase separation process is characterised in terms of density and mean size of the formed 
precipitates, allowing for the estimation of the critical size for stable precipitates. The obtained 
results are compared with experimental works. 
 
 
1. Introduction 
 
Fe-Cr alloys are the base for ferritic and ferritic/martensitic (F&FM) steels, which have a wide 
range of applications as structural materials in aggressive high temperature environments, such 
as gas turbines in conventional power plants, or key components in future nuclear reactors. 
Binary Fe-Cr alloys and F&FM steels undergo α-α' phase separation if the Cr content, xCr, 
exceeds ~9 at.%, in the region of temperatures potentially important for technological 
applications (>700 K) [1-3]. The formation of finely-dispersed, nanometric-size, coherent Cr-
rich precipitates in the bulk and at dislocations is long since known to be the cause of hardening 
and embrittlement of F&FM steels with xCr>9 at.% after thermal ageing and under irradiation. 
Therefore, a quantitative understanding of the kinetics of α-α' decomposition and its impact on 
mechanical property changes in Fe-Cr alloys is an important issue to be addressed. 
 In the present work atomistic kinetic Monte Carlo (AKMC) methods are used to simulate 
bulk thermal ageing in Fe-Cr crystals, where the cohesive model is provided by a density 
functional theory (DFT) based interatomic potential. The kinetic evolution of the α-α' phase 
separation is characterised in terms of precipitate size and density, allowing for the estimation of 
the critical size for stable precipitates. 
 
 
2. Methodology 
 
The thermal ageing was modelled using a rigid lattice AKMC technique [4]. The evolution of the 
system was driven by single vacancy diffusion, performing migration jumps at a rate 
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0 exp( / )m Bn E k TG= - , where n0 is an attempt frequency (taken as 6E1012 s-1), Em is the local 
atomic environment (LAE) dependent migration energy, kB is the Boltzmann constant and T is 
the absolute temperature. The dependence of Em on LAE is introduced as Em = E0+*Ef-i/2, where 
*Ef-i is the total energy change due to the vacancy jump and E0 is the excess migration energy. E0 
is taken as the migration barrier for an Fe (Cr) atom exchanging position with the vacancy, 
calculated by DFT (in the limit of dilute solution [5]) to be 0.65 and 0.55 eV for Fe and Cr 
species, respectively. The atomic interactions defining the total energy are described by an 
interatomic potential developed by Olsson et al. [6]. 
 The Cr-concentration xCr and temperature T were chosen to be within the miscibility gap 
where �-�’ phase separation is expected to occur, and also to be relevant for technological 
nuclear applications: 12-18% Cr and 600-900 K. Initially, Cr atoms were randomly distributed in 
a bcc Fe matrix with size 40×40×40 cubic cells, containing 128,000 atoms in total. The atomic 
configurations resulting from the vacancy diffusion process were analysed using a technique 
developed by the authors [7], so that the average precipitate size and density could be extracted. 
 
 
3. Results 
 
Applying the above methodology, the precipitates were identified during thermal annealing and 
their average diameter dp and density Np were determined as a function of Monte Carlo time tMC. 
Both are presented in Figs. 1a and 1b. From these figures, the three regimes of the precipitation 
process, namely nucleation, growth and coarsening, can be identified. The initial steep increase 
of Np and slow growth of dp denote a dominant nucleation regime. The presence of the plateau 
around the peak density Np

max and the simultaneous fast growth of dp is to be attributed to the 
onset of the growth stage. Finally, the decrease of Np and simultaneous increase of dp indicates 
the coarsening stage, at which larger precipitates grow at the cost of the dissolution of smaller 
ones.  
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Figure 1. (a) The precipitate density and (b) average diameter as a function of tMC. 
  
 It was found that Np

max increases linearly with xCr and decreases with T, and that the 
corresponding dp stays constant at 1.4±0.1 nm, for all xCr and T here studied. This means that at 
'peak time' (the moment corresponding to the higher precipitate density in the system) only the 
density of the precipitates varies with xCr and T and not dp. 
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The clear identification of the three stages of the precipitation process and the agreement 
with theoretical considerations allows us to go further and use the obtained simulation results to 
assess the critical free energy barrier and cluster size for a precipitate to become stable. In the 
theory of homogeneous nucleation [8] the nucleation rate, pN& , scales as 

 
)/exp( TkGN Bcp *�K� ,     (1) 

 
where *Gc is the critical free energy barrier for nucleation, i.e. for the precipitate to become 
stable. Applying Eqn. (1) to pN&  obtained from the Np-curves in Fig. 1a, *Gc is estimated around 
0.76 eV. Assuming spherical precipitates, within the same theory [8] the expression for the 
critical radius, Rc, reads 
 

3
4

c
c

GR
ps

D= ,     (2) 

 
where � denotes the α-α' interface energy. Estimating �-around 5-10 meV/A2 (depending on the 
surface orientation), Rc is found to be about 0.6-0.4 nm. 
 
 
4. Discussion 
 
A direct comparison of the results obtained using the AKMC simulations with thermal ageing 
experiments is difficult due to the absence of a safe criterion connecting tMC with real time treal. 
Here, we use experimental data to establish the synchronization of treal and tMC, based on the 
correspondence between dp seen in simulations and experiment. After intensive literature survey, 
the most suitable experimental works found were [2, 3] where relatively pure Fe-20at.%Cr alloys 
were thermally aged at 793 K. The small angle neutron scattering (SANS) technique was used to 
trace the precipitation evolution. The shortest studied ageing time was 12 h and 20 h, 
respectively and from then on only the coarsening stage was observed. Additional AKMC 
simulations for Fe-20at.%Cr aged at 793 K were therefore performed to obtain the 
synchronization coefficient, C, as real MCt C t= .  The latter was estimated to be 4.15×105 and 
6.92×104 using data regarding dp from [2] and [3], respectively. The results for Np and dp are 
presented and compared with the experimental data [2, 3] in Figs. 1a and 1b, respectively. 

It is clear that for both estimates of the synchronisation factor C the agreement with 
experiment is reasonable. Note that the discrepancy between the two experiments is probably due 
to slightly different interpretations of the SANS data. 
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Figure 2. (a) Comparison of the precipitate density and (b) average diameter with experimental 
observations.  
 
 
5. Conclusions 
 
An atomistic kinetic Monte Carlo approach has been applied to study the precipitation process in 
Fe-Cr alloys varying Cr content and temperature. The precipitation process has been 
characterized in terms of precipitate size and density. The obtained results have shown that the 
precipitation process in the studied alloys occurs in three stages, namely: nucleation, growth and 
coarsening. 

The critical size for stable precipitates was determined to be less than 1.2 nm, which is at 
the limit of the resolution of experimental techniques. The maximum density was found to vary 
with temperature and Cr content, but the average precipitate size (at the moment when the 
maximum density is reached) remains the same (dp=1.4 nm) within the error of the calculations. 
 Comparison of the precipitate size and density showed adequate agreement with 
experiment. We therefore believe that the presented results can serve to describe the evolution of 
precipitation process in its early stages, which is beyond the current experimental observation 
techniques. 
 
 
6. References 
 
[1] R.M. Fisher, E.J. Dulis, and K.G. Carroll, Trans. AIME, 197, 690 (1953). 
[2] F. Bley, Acta Metall. Mater., 40, 1505 (1992). 
[3] V. Jaquet, PhD. Thesis, Ecole Polytechnique, Palaiseau, France (6 March 2000). 
[4] C. Domain, C.S. Becquart, and J.C. Van Duysen, Mater. Res. Soc. Symp. Proc., 650, R3.25.1 
(2001). 
[5] P. Olsson, C. Domain, J. Wallenius, Phys. Rev. B, 75, 014110 (2007). 
[6] P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba, Phys. Rev. B, 72, 214119 
(2005). 
[7] G. Bonny, D. Terentyev, and L. Malerba, Comput. Mater. Sci., 42, 107 (2008). 
[8] J.W. Gibbs, Trans. Conn. Acad., 3, 102 (1878). 

Multiscale mechanics

296



Dislocation Core Fields and Elasticity Theory: The Screw Dislocation in Iron 
 
 

Emmanuel Clouet1,2,3, Lisa Ventelon1, and François Willaime1 
 
 

1Service de Recherches de Métallurgie Physique, CEA-Saclay, 91191 Gif-sur-Yvette, 
France; 2Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR CNRS 8517, 

Université de Lille 1, 59655 Villeneuve d’Ascq, France   
E-mail : 3emmanuel.clouet@cea.fr. 

 
 

ABSTRACT 
 
Recent ab initio calculations in bcc iron [1] show that the displacement created by a screw 
dislocation cannot be described only by the Volterra solution. A short-range elastic field is 
created too by a dilatation of the dislocation core. We model this supplementary elastic field in 
anisotropic elasticity theory using force dipoles located in the core along the dislocation line. 
This dilatation field is responsible for the dislocation formation volume measured in ab initio 
calculations (δV=2.5±0.5 Å2 for the screw dislocation). Taking into account this core dilatation 
in the elastic modeling allows reproducing the ab initio displacement maps obtained for different 
configurations of the dislocation dipole. Moreover, because of the interaction between the 
Volterra elastic field and the one created by the core dilatation, it is necessary to consider both 
contributions when calculating the elastic energy associated to a dipole. Neglecting the core field 
in the calculation will lead to dislocation core energy with a strong dependence on the dipole 
geometry and on the size of the simulation unit cell. 
 
[1] L. Ventelon and F. Willaime, “Core Structure and Peierls Potential of Screw Dislocations in 

α-Fe from First Principles: Cluster versus Dipole Approaches”, J. Computer-Aided Mater. 
Des. 14, 85 (2007). 
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ABSTRACT 
 
 
Despite the recent noticeable development in nonlocal mechanics, the micromechanical analysis 
on nonlocal effects arising from heterogeneous media is still rife with conflicting views. The 
author has recently developed a new micrmechanics based homogenization method (Mechanics 
research communications, 35 (2008), 126-133) trying to resolve this problem. In this work, the 
method is applied to derive cosserat moduli of some media with simple microstructure. 
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ABSTRACT 
 
Transformation plasticity is that when a phase transformation of ferrous or non-ferrous alloys 
progresses even under an extremely small applied stress compared with a yield stress of the 
material, a permanent deformation occurs [1-6]. One of widely accepted description for the 
transformation plasticity was proposed by Greenwood and Johnson [1]. Their description is 
based on an assumption that a weaker phase of an ideal plastic material could deform plastically 
to accommodate the externally applied stress and the internal stress caused by the volumetric 
change accompanying the phase transformation.  
 
In this study, an implicit finite element model was developed to simulate the deformation 
behavior of a low-carbon steel during phase transformation. The finite element model was 
coupled with a phase field method, which could simulate the kinetics for ferrite-to-austenite 
transformation of the steel. The latent heat generation by the phase transformation was 
implemented in both simulations. The thermo-elasto-plastic constitutive equation for each phase 
was adopted to confirm the weaker phase yielding, which was proposed by Greenwood and 
Johnson [1]. From the simulation, the origin of the transformation plasticity was quantitatively 
discussed comparing with the other descriptions [2-6] of it. 
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ABSTRACT 
 
We present a novel multiscale modeling approach that can simulate millions (or even billions) of 
electrons effectively with density functional theory (DFT). The method is based on a full 
formulation of quasicontinuum (QC) approach, including both local and nonlocal contributions. 
The only energetic formulation is the present method is Orbital-Free DFT (OFDFT). The local 
QC contribution is handled by Cauchy-Born rule with OFDFT calculations. The quantum 
mechanical problem of the nonlocal electrons is solved in the presence of the local electrons and 
nuclei. The coupling between the local/nonlocal atoms is calculated quantum mechanically via 
OFDFT. The method is demonstrated with a nano-indentation study of Al thin film (the entire 
system contains more than 60 millions atoms). The results are compared with those determined 
from EAM-based QC simulations. 
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ABSTRACT 
 
The response of a ceramic material to impulsive loads depends on its composition and structure 
at grain scale. The analysis of this dependency is still an open issue. Knowledge of the key 
characteristics at that scale would allow the purposive design of ceramic materials optimized for 
a desired macroscopic response. The grain structure of a ceramic is characterized by 
morphology, distribution of orientation and size of the crystalline grains and the material 
properties of grains and grain boundaries. Typically, the grain diameters of the regarded 
ceramics range between a few up to one hundred micrometers. The considered scale suggests 
treating single grains as continua and grain boundaries as planes. Transient FEM accounting for 
interfacial failure is applied as numerical method. The numerical analysis is conducted on the 
basis of three-dimensional virtual samples consisting of a representative number of grains. These 
representative volumes (RVs) are generated via power diagrams whose statistical moments are 
optimized to be in accordance with those of the considered ceramic [1]. Preceding numerical 
analyses of the pure elastic response of a RV under dynamic loading suggest that the crystal 
lattice based anisotropy of the single grains has to be accounted for [2]. 
 
In this study the inelastic response, specifically grain boundary failure, of dynamically loaded, 
generic ceramic RVs is analyzed. Interfacial failure is represented by dynamically inserted 
interface elements whose response is governed by a cohesive law. The cohesive law is scaled in 
accordance with the ratio of the typical lengths of the process zone and the discretization. In 
particular, it is investigated if grain anisotropy influences the threshold and pattern of failure. 
 
[1] M. Kühn, “Optimierung von Power-Diagrammen zur Modellierung keramischer 

Mikrostrukturen”, Diplomarbeit, EMI-Bericht 15/05, Fraunhofer Institut für 
Kurzzeitdynamik & FU Hagen (2005). 
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ABSTRACT 
 
The simulation of manufacturing processes is of increasing interest since it enables the virtual 
optimization of material properties and process parameters. Consequently, this approach implies 
a high potential to reduce time and cost during development and fabrication. This contribution 
discusses the simulation of a dual phase steel manufacturing process which is based on a 
micromechanical approach. The properties of the final steel sheet do strongly depend on the 
microstructure evolution during processing. For this reason, different modelling strategies are 
brought together, among them crystal plasticity, cellular automata and continuum mechanics. 
Special considerations are necessary to ensure an appropriate exchange and transfer of the 
required data which depend on the modelling strategy of the particular process step. Starting 
from the hot rolled sheet, a unit cell model is generated to represent the initial ferritic-perlitic 
microstructure. The essential data to define the initial microstructure are obtained from 
experiments. The first process step simulated is cold rolling. Here, a single crystal plasticity 
model is applied to consider texture development, hardening and evolution of anisotropic 
material properties. The following thermal treatment of the steel sheet takes into account the 
microstructural changes caused by phase transformation, recrystallization and recovery. A 
transformation of the initial microstructure into a dual phase microstructure consisting of ferrite 
and martensite is expected. The final dual phase microstructure is assessed in the “virtual lab” for 
a numerical homogenization of the mechanical properties. These data will be used to fit 
appropriate phenomenological plasticity models and to facilitate subsequent process simulation 
steps. 
 
 
1. Introduction 
 
The successful introduction of new dual phase steels in the automotive industry strongly depends 
on the availability of suitable simulation tools. The microstructure of this material changes 
significantly during processing and affects also the mechanical properties on the macroscopic 
level such as yield stress, formability, toughness and fatigue resistance. The objective of this 
research project is to develop an integral simulation concept for the process chain simulation 
which covers consecutive stages of production beginning with the hot rolled steel sheet and 
ending with a crash simulation of the particular component. This contribution is focused on the 
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micro-mechanical aspects which have to be considered within the process chain simulation. 
Therefore, cold rolling, annealing and the numerical homogenization procedure is discussed in 
detail. 
 
 
2. Experimental Simulation and Characterization 
 
The experimental characterization of the hot rolled steel sheet provides the input data for the 
numerical model. Additional experimental characterizations after each process step are 
performed to validate the particular results obtained from the numerical simulation. The hot 
rolled material consists of ferrite and lamellar shaped pearlite. The microstructure and texture of 
the hot rolled strip are determined by EBSD measurements and will be considered in the 
subsequent cold rolling simulation, see Fig. 1. Thus, this approach allows to include 
microstructural data like grain shape and phase distribution and consequently implies material 
inhomogenities within the model. Since both phases are modeled separately in the cold rolling 
simulation, it is also necessary to characterize the mechanical behavior (flow curves) of the 
ferrite and the pearlite. Therefore, annealing tests were accomplished at a laboratory annealing 
system. The variation of thermal treatment enables the realization of different well-defined phase 
compositions with the hot rolled material. Flow curves of the annealing samples are derived from 
tensile tests and were used to determine the flow curves for each single phase. 
 

 
 
Figure 1. Experimental measurements to determine the of input data for cold rolling simulation. 
 Left: Micrograph of the hot rolled sheet. Center: Orientation map. Right: Pole figures. 
 
 
3. Cold Rolling Simulation 
 
To take into account the microstructure morphology of the hot rolled sheet within the simulation, 
the concept of representative volume elements (RVE) is used. A unit cell with 400 ferrite grains 
and two band-shaped perlitic regions with a volume fraction of 22 % is generated, see Fig. 2. The 
mechanical behavior of the ferrite grains is modelled within the framework of crystal plasticity; 
see e.g. [1]. This physically based theory describes plastic flow as a result of the movement of 
dislocations in a continuum way. This means, that plastic deformation is the result of continuous 
shearing (slip) along well-defined planes of the crystal lattice. For the numerical simulation a 
crystal plasticity model, based on [2], and implemented as ABAQUS user material subroutine, is 
used. A Voce hardening law was also implemented [3]. This modelling strategy allows to predict 
the texture development, intergranular stresses and morphology evolution as illustrated in Fig. 2. 
To model the cold rolling process, appropriate periodic boundary conditions have to be defined. 
Therefore, a prescribed deformation in 3-direction is applied. The deformation in transverse 
direction is suppressed, since it is assumed that the width of the sheet remains constant. A 
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mechanical stress in rolling direction can be applied to account for the tensile forces during 
rolling. The relevant simulation results are transferred to the subsequent annealing simulation 
using cellular automata. 
 

 
 
Figure 2: Left: Periodic unit cell model of the generated microstructure. The band-shaped red   
  region represents the pearlite phase. Center: Deformed unit cell model after cold   
  rolling simulation. Right: Von Mises equivalent stress distribution within the unit cell. 
 
 
4. Annealing Simulation 
 
The heat treatment of the cold rolled sheet is simulated with a cellular automaton (CA) which is 
a versatile computational principle [4]. For this purpose, the volume considered is divided into a 
number of cells. These cells are discrete and assumed to be homogenous. The actual state of each 
cell is defined by a number of internal variables which independently evolve according to their 
local neighbourhood by the CA switching rules L. For the simulation of the annealing process, 
the function L is based on two internal quantities: the texture information and a driving force in 
form of e.g. a dislocation density. To define the initial state, the necessary data of one integration 
point from the previous finite element unit cell calculation are projected to one cell of the cellular 
automaton. While the current texture is obtained directly from the cold rolling simulation, the 
dislocation density is not available. Thus, this quantity is correlated with the accumulated plastic 
slip that follows from the crystal plasticity model [5].  
 
 
5. Virtual Laboratory 
 
Besides the simulation of microstructure evolution, the unit cell model is utilized to obtain 
information about the macroscopic material behavior. Therefore, a numerical homogenization 
procedure [6] is employed. This procedure allows the calculation of macroscopic flow curves 
under consideration of varying loading directions. This is equivalent to tensile tests with different 
specimen orientations, and may be denoted as a “Virtual Material Testing” procedure. In 
principle, this virtual testing can be performed after each simulation step and can predict 
mechanical properties during the process chain simulation. Further, it allows also to analyze load 
cases which can not be realized with experiments. The prediction of flow curves after heat 
treatment is of special interest, since these data are used to calibrate phenomenological plasticity 
models (e.g. Barlart89) for the subsequent deep drawing simulation step. First results confirm the 
potential of this approach. In Fig. 3 (left) a dual phase unit cell model with nine ferrite grains and 
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a spherical martensite portion is depicted after two different steps of deformation. The virtual 
testing of the deformed unit cell with varying loads is illustrated in the middle of Fig. 3. The 
resulting yield locus diagram is calculated for three different degrees of deformation and 
illustrates the influence on the hardening behavior. Further validation and improvements will be 
performed in near future. 
 

 
 
Figure 3: Virtual material testing procedure and resulting yield locus diagram for different 
degrees of deformation of a dual phase unit cell. 
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ABSTRACT 
 
There is great interest currently in accounting for underlying microstructural response at the 
grain/particle/fiber scale on the overall continuum mechanical behavior of heterogeneous 
materials---such as particulate ceramics, concrete, masonry, geomaterials (soils and rocks), 
asphalt, bone, etc---in terms of predicting their damage, initiation of fracture, and localized 
deformation. Much research has been done on traditional macro-continuum inelastic constitutive 
modeling such that a wide range of books are available to reference. Likewise, research has been 
done and is ongoing on simulating directly the inelastic microstructural mechanical response---at 
the grain/particle/fiber scale---and reported in the literature. One of the current research 
challenges, however, is how to bridge these length scales, from grain/particle/fiber scale 
(sometimes called the `meso'-scale) to the macro-continuum scale of the engineering application, 
without losing salient kinematic structure and micro-stresses. The finite strain micromorphic 
plasticity model framework presented in this talk is meant to bridge the mechanics between the 
grain/particle/fiber and macro-scales: to do so not only in a hierarchical information-passing 
(homogenization) multi-scale fashion, but also for concurrent multiscale modeling retaining the 
grain/particle/fiber scale resolution in spatial regions of interest---for instance where 
damage/micro-cracking initiate---while transitioning to a `far'-field macro-scale continuum 
representation via a micromorphic continuum region. The additional degrees of freedom and 
constitutive richness of the micromorphic continuum mechanics and plasticity equations provide 
a more plausible transition than standard macro-continuum mechanics. This talk will discuss a 
phenomenological bridging-scale constitutive modeling framework in the context of finite strain 
micromorphic plasticity based on a multiplicative decomposition of the deformation gradient 
and microdeformation tensor . In addition to the 3 translational displacement vector  degrees 
of freedom (dofs), there are 9 dofs associated with the unsymmetric microdeformation tensor 
(micro-rotation, micro-stretch, and micro-shear). The Clausius-Duhem inequality formulated in 
the intermediate configuration yields the mathematical form of three plastic evolutions equations 
in either 1) Mandel-stress form, or 2) Metric form. The particulars are spelled out for a pressure-
sensitive cap plasticity model for bound particulate materials. 
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ABSTRACT 
 
 

By extracting the variation of the plastic strain rate from measurements of the stress-strain curves 
of free standing multilayers of varying thickness, the large extent of the microdeformation stage 
was determined . The stress varies dramatically with strain during this stage [1]. In this work, 
Dislocation Dynamic simulations [2] are used to investigate the microyield evolution with layer 
thickness of idealized periodic multilayers configurations : parallel interfaces are introduced in a 
cubic volume with varying layer thickness, from a few micron period to 300 nm. Crystalline 
orientations and elastic constants between the layers are kept equal, the 'interfaces' being only 
defined by a critical normal stress threshold for the crossing of dislocations. Impenetrable 
boundary conditions are imposed on the cube side. Tensile tests are carried out until macroscopic 
plasticity is reached, i.e. the cube is sheared through its whole volume. A scaling of the 
microyield regime is observed with the layer thickness. Moreover, cooperative mechanisms 
between different slip systems are observed on both side of an interface which bypasses the pile 
up mechanism imposed by the threshold stress at the interfaces. The results are discussed and 
compared to experimental conditions. 
 
 
 [1] Saada, G.; Verdier, M. & Dirras, G. F.,Phil Mag, 2007, 87, 4875-4892 [2] Verdier, M.; 
Fivel, M. & Groma, I. Modell. Sim. Mat. Sci. Eng., 1998, 6, 755-770  
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ABSTRACT 
 
 

Finite element modeling (FEM) is widely used to predict the response of complex structures to 
external conditions like applied loads and displacements or temperature changes. FEM is also an 
important research tool in fracture mechanics where few engineering problems have analytical 
solutions. Numerical investigations have largely contributed to improve the understanding of the 
specimen size and geometry effects on cleavage fracture of tempered martensitic, bainitic and 
ferritic steels in the transition region between the ductile and brittle regime. In order to do so, the 
so-called local approach of cleavage has been extensively used in the past to account for the size 
and geometry effect on fracture toughness. In this approach, it is assumed that cleavage occurs 
when a critical condition, characterized by the attainment of the critical stress state, is reached 
under increasing load. The material investigated in this study is a high-chromium tempered 
martensitic steel called Eurofer97 developed within the European fusion reactor material 
development program. We present a series of 2D plane strain and 3D finite element simulations 
of loaded pre-cracked compact tension specimens. The simulations were done for constitutive 
behaviors determined at temperatures in the transition region. The calculated load-displacement 
curves obtained from the 2D and 3D simulation results are compared with the experimental ones. 
It is shown that the overall experimental load-deflection curve cannot be properly reconstructed 
with the 2D simulations, which yield a significantly larger macro-yielding point and a larger 
elastic slope than the experiments. The limits of the applicability of the 2D simulations to 
calibrate the critical stress state of the local approach are then discussed. Using a large set of data 
of the Eurofer97 steel, including two different compact tension specimen sizes, the predictions of 
the specimen size effect on fracture are analyzed on the basis of the critical stress condition to 
trigger cleavage.  
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ABSTRACT 
 
 
Nano-structured NiTi alloys are produced by high pressure torsion up to complete amorphization 
and subsequent recrystallization. Its morphology is essentially influenced by the energies 
introduced into the material when an austenitic grain instantaneously transforms into martensite. 
For grain sizes in the order of 50nm one frequently observes typical martensite laminates 
composed of an alternating sequence of twin-related Bain correspondence variants [1]. For larger 
grains in the order of 100nm it becomes more likely to observe two such martensite laminates 
whose arrangement relative to each other, as it appears in a micrograph, gives the impression of a 
“herring-bone pattern”. Such a configuration prevails if it minimizes the energy that needs to be 
overcome in order to be able to create the new phase [2]. In partially transformed grains one 
frequently finds wedge-shaped martensite sections with a certain energy optimizing wedge-
angle. Consequently, this paper focuses on the evaluation of the energies involved in the 
phenomenon of martensitic transformation. As one of the predominant contributions the strain 
energy is computed by both the finite element method and, where available, analytical means. 
The total energy is then obtained by additionally taking into account the chemical interface 
energies at the twin- as well as the grain-boundaries. An extensive parameter study allows to find 
the configuration minimizing the total energy barrier, which enables to predict what eventually 
appears in a grain of a given diameter. The resulting morphology is in good agreement with the 
experimental evidence obtained by means of high-resolution transmission electron microscopy. 
 
[1] T. Waitz, T. Antretter, F.D. Fischer, and H.P. Karnthaler, “Size Effects on the Martensitic 

Martensitic Phase Transformation of NiTi Nanograins”, Journal of the Mechanics and 
Physics of Solids, 55, 419 (2007). 

[2] T. Waitz, W. Pranger, T. Antretter, F.D. Fischer, and H.P. Karnthaler, “Competing 
Accommodation Mechanisms of the Martensite in Nanocrystalline NiTi Shape Memory 
Alloys”, Materials Science and Engineering A, 481-482, 479 (2008). 
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ABSTRACT 
 
 

Image-based modeling is used to investigate the mechanical response of a beta titanium alloy 
(+21S) at micro and meso scales with a goal to identify microstructural features that cause initial 
plastic flow. Actual three-dimensional (3D) morphological and crystallographic description of 
metallic grains is embedded into finite element models to analyze local spatial heterogeneity of 
state variables, such as stress and crystallographic slip, under simple loading conditions applied 
at mesoscale. Analysis of the data demonstrates the complex nature of the interactions between 
crystallography, morphology, and mechanical response in this alloy, and additionally highlights 
the importance of considering the nearest-neighbor interactions when investigating the 
microstructure-property correlation. The methodology presented here should be widely 
applicable to other alloys and materials for the identification and development of microstructure-
property correlations and trends. 
 
 
1. Introduction and Methodology 
 
Image-based modeling is currently being employed to simulate local deformation and damage 
mechanisms, to predict the effective properties of heterogeneous metallic materials, and to 
examine the mechanical response of microscale components at the mesoscale, for example see 
Refs. [1, 2]. Advanced material characterization techniques such as serial sectioning, X-ray 
tomography and X-ray diffraction have made it possible to characterize and quantify 3D 
microstructural data. Finite element (FE) modeling using complete 3D morphological and 
crystallographic information can be employed to identify critical microstructural features where 
plasticity is likely to initiate and affect mechanical performance at higher scales, as well as other 
phenomena. The foundations of this paper are set in the co-authors’ work on the creation of high-
fidelity 3D microstructural reconstructions and their incorporation into large-scale FE models 
[2]; however, the previous work was limited to linear elastic and/or isotropic continuum 
plasticity regimes. Current work extends the material behavior into crystal plasticity and applied 
to the bcc titanium alloy +21S. 
 
For this work, a large 3D morphological and crystallographic reconstruction of the bcc beta-
titanium was generated by serial sectioning and optical microscopy with periodic electron 
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backscatter diffraction (EBSD), followed by computerized reconstruction, see Ref. [3] for 
complete details. In order to reduce computational time and memory requirements of the 
simulations, a smaller and low-resolution subset, which consists of 136x128x137 �m3 (92 total 
grains with 16 interior grains), is arbitrarily selected from the larger reconstructed volume. A 
regular mesh is superposed on the microstructure by using 1-to-1 correspondence between image 
data points and centroids of 8-node brick elements. Individual grains are created as element sets 
and assigned the average crystallographic orientation calculated using EBSD for the 
corresponding grain. The microstructural subset with superimposed FE mesh is shown in Fig 1. 
Commercial FE software (ABAQUS®) is used to simulate the mechanical response of the RVE.  
Three sets of displacement-based loading conditions are considered: 1) uniaxial tension in three 
global directions; 2) pure shear in three orthogonal planes, XY, XZ and YZ; and 3) biaxial 
tension in the same planes. Single crystal material behavior is simulated based on hypoelasticity 
and Schmid’s resolved shear stress assumption along with one-stage hardening behavior. For 
numerical implementation, a user-material subroutine created by Huang [4] is employed. 
Representative material parameters available in literature are used and given in Tab 1. 
 
 
 

 
 

Figure 1. Reduced grain dataset (RVE) and 
the superimposed FE mesh. The colors are 
randomly generated. 
 
 

Table 1. Representative Ti +21s material 
parameters for the single crystal model. 
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2. Results and Discussion 
 
The effective stress-strain behavior of the 92-grain RVE under multiple loading conditions is 
shown in Fig 2. The mechanical responses under tensile Y and Z, pure shear XY and XZ, and 
biaxial XY and XZ loadings, respectively, are alike; therefore only one from each pair is shown 
here. The response in X-direction has a higher effective modulus and flow stress than those of Y- 
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and Z- directions. This indicates that the size of the RVE is not enough to account for the 
macroscopic behavior of the titanium alloy, which is isotropic. The pure shear responses of the 
material in XY and XZ planes are stiffer and stronger than the pure shear response in the YZ 
plane. This is due to the tensile response in X-direction being stiffer and stronger than those in 
the Y- and Z-directions. Under biaxial tensile loading, the effective responses in the XY and XZ 
planes are more compliant and weaker than the YZ plane response. Due to Poisson’s effect and 
the isochoric nature of plastic slip, the biaxial tension cases should be equivalent to uniaxial 
compression in the third direction for isotropic materials (i.e. biaxial tension in the YZ (or XZ) 
plane is equivalent to compression in the x- (or y-) direction). This is found from the simulations 
as shown in Fig 2 in which effective stress-effective strain behavior of the RVE under tension in 
the X-direction (the constitutive relationship used in the simulations does not differentiate 
between tension and compression) matches closely with the behavior under biaxial tension in the 
YZ plane. Since the tensile response in the X-direction is stiffer and stronger than those in the Y- 
and Z- directions, it explains why the order of performance in terms of higher stiffness and 
strength reverses from pure shear loading to biaxial tensile loading of the RVE.  
 
 
 
 

 
Figure 2. Comparison of effective RVE 
behavior under representative applied loads. 
 

 
Figure 3. Plastic slip activity in selected 
grains for three representative loading cases. 
 

Although the RVE selected for this analysis does not offer a large enough sampling size to 
simulate global trends in the material, the results from the image-based FE simulations can be 
analyzed in conjunction with the reconstructed microstructure to investigate the correlations 
between local microstructural features and mechanical response, while acknowledging the 
difficulty in ascertaining their general applicability. In the current RVE, a group of five gains 
provides an interesting example of the effects of morphology and crystallography on the local 
material response. The grains are shown labeled from numbers 1 to 5 in Fig 3a with the bounding 
box defining the confines of the RVE. Figs 3b-3d show the plastic slip activity as described by 
the cumulative shear strain at the onset of global yield (0eff approximately equal to 1.5 %) for 
three representative loading cases, as shown in Figure 2. In Figure 3, the yielded material points 
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are marked with the same shade of color as that of the grain in Fig 3a, and the semi-transparent 
view through the grains allow the yielded points on the back faces to be seen in dull tones in 
contrast with the brighter ones in the front. A material point is defined to have yielded when its 
cumulative shear strain ≥ 0.01 %. Of note in this group of grains is that the center grain (no. 1) 
does not show any yielded points for all loading cases even though all other grains surrounding it 
yield. This is observed for all simulated loading cases including those that are not shown here. 
Additionally, the adjacent grains (nos. 2 and 3) show the highest level of plastic flow activity 
among all grains in the RVE. In the case of uniaxial tension in the X-direction, the central grain 
(no. 1) has its [001] orientation closely aligned with the loading axis, while grains 2 and 3 have a 
[111] and [112] axis, respectively, closely aligned with the loading axis. Recall that for cubic 
materials the stiffest and the least stiff orientations are typically <111> and <100>, respectively. 
This implies that grains 2 and 3 have higher effective moduli in the loading direction and thus 
carry most of the tensile load, and therefore, undergo large plastic slip; whereas grain 1 remains 
at relatively low tensile stress. These results indicate that the microstructure-property correlations 
in this material are not necessarily straightforward, and must include effects of the 
crystallography and morphology of the nearest neighbor grains. These effects may also extend 
into next-nearest neighbors as well, the extent of which could be studied only with a larger 3D 
dataset. 
 
This work presents an initial case for the usefulness of the integrated techniques of high-fidelity 
microstructural reconstruction and FE modeling in developing robust microstructure-property 
correlations for initial plastic slip or yielding in metals. The mechanical analysis of the 92-grain 
titanium +21s alloy RVE resulted in the peculiar case of the five grains which highlights the 
utility of the image-based modeling framework in identifying critical microstructural features. In 
general, the investigation of an appropriately large number of grains (representative volume 
element) is paramount to achieving definite correlations and a high degree of confidence in them.  
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ABSTRACT 

 
This paper deals with micromechanical analysis of nonlinear behaviour of a rock material. To 
model the deformation response realistically both microstructures as well as the non linear 
behaviour of the heterogeneities are taken into account through a micro-macro procedure. The 
natural material is assumed like two phase composite with argillaceous matrix and spherical 
quartz or calcite inclusion for problem simplification. A nonlinear Von Mises model 
combined with Perzyna’s viscopla inclusions were considered as being linear elastic 
materials. Two alternative approaches have been used: an analytical and a numerical, finite 
element based. For the analytical approach a Mori-Tanaka schema has been used and for each 
increment the viscoplastic material is replaced by a conveniently chosen linear comparison 
material. In numerical approach the axisymmetric unit cell concept with periodic boundary 
conditions and an elastovicoplastic material have been used. Good agreement is obtained 
between experimental and simulated results.   
 
1. Introduction  
 
The material studied in this paper is a mudstone form the East of France known as argillite of 
Meuse-Haute-Marne (M/H-M) and extensively studied these ten last years in rapport with the 
possibilities of nuclear waste disposal construction. While a number of macroscopical models 
for this rock have already been developed([1], [5]), the work is going on to justify the 
hypothesis of these models from micromechanical mechanisms or/and to develop 
micromechanical models for long term predictions, up to several thousands of years. 
In this study, two classes of homogenisation modelling approaches have been proposed to 
evaluate the effective mechanical responses of argillite composites. The first class treats the 
problem analytically in the frame work of Eshelby and Hill polarization approach and by 
adapting a convenient linear comparison material. The advantage of these methods is that the 
macroscopic constitutive model follows readily from the analytical treatment. The second 
class uses micro-macro numerical procedures based on the classical concept of local spatial 
periodic representative volume element [4] combined with finite element method.  
 
2. General considerations on material and principal hypotheses   
 
At mesoscopic level (some millimetres to some centimetres) the M/H-M argillite appears as a 
composite material with a clay matrix and random inclusions of quartz and calcite that occupy 
up to 40% of the volume of the rock (figure 1). Some macropores could be observed around 
the inclusions, but the microscopic observations reveal that the most part of pores is found 
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inside of the clay matrix which is composed by palettes of clay minerals (illite, chlorite, 
smectite) and micro- and nano-pores (up to 18% of the total volume of the rock). 
 
In this paper the rock is considered to be a three phase composite composed by a clayey 
matrix and spherical inclusions of quartz and calcite, in such a way that the volume fractions 
of these phases satisfies the unity partition, i.e : 
 
fm + fqu + fca = 1           (1) 
 
where subscripts m, qu and ca stand for clayey matrix, quartz and calcite inclusion respectively. 
A further simplification, used later in numerical homogenisation procedure, could be made by 
supposing that mechanical properties of quartz and calcite are the same (which is true 
approximately) that leads to a bi-phase composite. Elastic properties of pure minerals that 
composed the inclusions are known from the literature ([2]) while those of clay matrix could 
be obtained by an inverse problem using known macroscopical data for this rock (see for 
example[2]). In this paper this same inverse procedure identification has been used to obtain 
the parameters for the nonlinear behaviour of the clay matrix. For the range of stresses 
susceptible to be applied on the rock, the behaviour of quartz and calcite inclusions could be 
considered to be linear elastic, so the only nonlinear phase is the clay matrix which is 
supposed to follow a viscopalstic behaviour. Considering the structure of clay platelets one 
could reasonably assumes that instantaneous nonlinear behaviour of the matrix would be 
governed by the sliding of clay platelets and uses a Von-Mises model to describe this non-
linearity, with the yield function written as : 

� �p
e

in
eF 0�� H0 ���           (2) 

where e�  is the equivalent stress, in
0�  is the initial onset of plasticity, � �p

e0H is a hardening 
function of the equivalent plastic strain p

e0 . In this work a hardening function of Voce type is 
used: 

� � � �p
ebp

e
p

e eRR 000 .
inf0 1H ����          (3) 

The time dependent behaviour of the rock is derived from a Perzyna’s approach, i.e. by 
supposing that the strain rate could be written as : 

1

0

1
m

vp �0 �
�

� �
� � 


� �
�           (4)  

Here ,m �  define respectively the strain hardening and the viscosity parameters (i.e. the 
sensitivity strain rate parameters). and 0� is the static yield stress of the material. 
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Figure 1 : Schematic structural model 
for M/H-M mudstone (Following [2] )  

 

Figure 2. A representative volume element for two 
phases composite and axisymmetric finite element 
mesh 
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3. Micromechanical modelling of nonlinear elastoplastic behaviour of M/H-M mudstone 
 
3. 1 Analytical approach 
 
The modified secant method as described in [3] has been used in this approach in order to 
construct the linear comparison material that replaces the nonlinear clayey matrix for each 
increment. It is known that such method coincides with the variational approach proposed by 
Ponte-Castaneda ([3]). Once the equivalent secant elastic tensor sec

mC is obtained for a given 
increment for the clayey matrix, then the homogenised behaviour of the rock for this 
increment is written as : 

E:sec
homC��            (5) 

where the homogenised secant elastic tensor is obtained through a classical Morii-Tanaka 
procedure using the elastic properties of inclusions and sec

mC for the clayey matrix, i.e: 
� � MT

i
i

miim f ACCCC :secsecsec
hom � ���  i=ca,qu       (6) 

In this last expression MT
iA  represents the fourth order concentration tensor of the ith inclusion 

phase. The details of modified secant method are not presented here but could be found in [3]. 
The figure 2.a shows a comparison of model with experimental data on this rock. Even though 
a good general agreement is obtained, the volumetric strains, as expected could not be 
correctly described by the model since no plastic volumetric strains has been considered. The 
dilatancy observed for high level stress could be taken into account by introducing some kind 
of damage, neglected here for the sake of simplicity. 
 
3. 2 Numerical approach 
  
The object of numerical modelling was in one hand to obtained the elastoplastic behaviour of 
the rock based on its structure and in the other hand to extended such modelling in the case of 
time dependent behaviour which was not treated by analytical method.    
For convenience of studies, the constituents are assumed to be isotropic. Perfect bonding is 
assumed at the interfaces between quartz (calcite) inclusion and matrix. Spherical inclusions 
are assumed to be packed as a hexagonal periodic array as discussed above. Symmetry 
arguments are then used to limit the RVE to ¼ of the axisymmetric cell (Fig. 1.b). R, is the 
initial radius of the unit cell, H, the initial height of the cell and r the initial radius of the 
particle.  
The analysis was performed using the commercial code ANSYS. Referring to Fig. 1, 
symmetry boundary conditions are used for sides (x = 0, and y = 0), while side (x = R) has a 
uniform displacement in the x direction for periodic boundary conditions. At side (y = H) a 
uniform displacement in the y direction is considered as uniaxial loading.  
The macroscopic stress-strain components are computed as the volume average of 
microscopic components ( ;ij ij� 0 ) according to the following equations: 

1
ij ij

V

dV
V

� �� 6     ;  1
ij ij

V

dV
V

0 0� 6         (7) 

Where ij�  and ij0  are the macroscopic average component of stresses and strains over the 
microscopic volume V of the periodic representative volume element.  
 
An inverse procedure has been used based on this modelling in order to adjust the parameters 
of viscoplastic model for the clayey matrix. For this purpose traixial tests with different strain 
rate could be used. For each test a set of FE analysis is performed by varying parameters. 
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Local fields of stresses, total and viscoplastic strains were determined. Then using equation 
(7), values of macroscopic stress strain tensor were calculated. The method adopted here for 
identifying the clayey matrix parameters consists on minimizing the sum of the differences 
between the experimental and predicted results. In respect with the model described in §2, the 
following set of parameters has been obtained calculation   

0 0 inf7600 ; 0.1; 1.2185 ; 572.47 ; 14.3151 ; 252.059a aE MPa MPa R MPa R MPa b9 �� � � � � �
and ( 0.8; 0.01m �� � ). As an example in the figure 2.b is shown a comparison of the 
macroscopic experimental data and numerical response of argillite under triaxial loading at 
strain rate of 10-5 s-1.   
Globally the simulated and experimental results are in good agreement for the identified 
parameters, except at the strain about 0.01. 
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Figure 2 : Comparison of model responses with laboratory data 

a) Elastoplastic behaviour, modified secant 
method (continuous lines)  

    b) Elastoviscoplastic behaviour, numerical 
homogenisation (continuous line). 

 
4. Conclusions 
 
An analytical and a numerical approach were used to describe the effective behaviour of a 
rock considered as a three phase composite. The prediction of analytical model was restraint 
in the elasticplastic behaviour modelling where a good overall accordance was found with 
laboratory data. The numerical modelling was successfully used in identification of 
viscoplastic parameters of clayey matrix and in prediction of effective response of the rock. 
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ABSTRACT 
 
 
We describe a mixed continuum and discrete computational approach for the simulation of 
elastomers at the rubbery plateau. Salient features of the method include: a) a systematic and 
automatic coarse-graining of the degrees of freedom of a network in large regions of an 
elastomeric solid, b) a very fast way to accurately compute the free energy of the coarse-grained 
network, and c) a resolution to the level of crosslinks in those regions of the solid that merit a 
finer description. The coarse-grained model automatically adapts as the body is deformed. Some 
applications for this method include the simulation of nanoindentation, with possible extensions 
to double-network hydrogels and cracks with crazing. 
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ABSTRACT 
 
 
Dislocation dynamics simulations are currently limited in their ability to simulate plastic 
deformation in crystals at strain rates below 1 s-1. There is a strong drive to be able to perform 
simulations at much lower strain rates that are easily accessible with common experimental 
equipment, and to be able to relax dislocation structures from loaded to completely unloaded 
states so that microstructures could be directly compared with TEM observations. This practical 
strain rate limit in dislocation dynamics manifests itself though a combination of the intrinsic 
mobility of dislocations, the gradients in forces acting on dislocations as they approach other 
dislocations, the frequency of discontinuous topological events, and the time integration 
procedures used to evolve the system. As a result, the distribution of dislocations velocities for a 
dislocation network becomes sharper as the strain rate decreases, and the high velocity tail of the 
distribution remains. Much of these difficulties are intrinsic to the crystal. However, the sharp 
gradients in the force may be modified by the spreading dislocation cores, and robust implicit 
time integration procedures may be developed to push the lower strain rate limit of dislocation 
dynamics simulations. Analysis of different algorithmic for dislocation quasi-statics will be 
compared for in their ability to decrease the practical limit of accessible strain rates and in their 
relative computational cost. 
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ABSTRACT 
 
Atomic-scale simulations provide valuable insights into the mechanisms responsible for 
experimentally observed friction at the atomic or molecular scale. We use classical molecular 
dynamics simulations in conjunction with experimental data to determine the influence of 
material type, surface structure, and temperature on observed friction coefficients. While friction 
in solids is generally considered to be athermal, under certain conditions thermally activated 
behavior has been observed experimentally. Interestingly, both thermally activated and athermal 
friction have been experimentally observed in tribological studies of polytetrafluroethylene 
(PTFE) sliding surfaces. Here we explore the origins of these effects. We find that, by changing 
the relationship between the sliding direction and the polymer chain direction, the friction can be 
switched from a wear-free to a highly wearing friction mode. The simulations explore the 
relationship of these regimes to the thermally activated behavior.  
 
 
This was supported by an AFOSR-MURI grant FA9550-04-1-0367. The University of Florida 
High-Performance Computing Center is also acknowledged for providing computational 
resources and support.  
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ABSTRACT 
 
 
This work is to conduct multiscale computational simulations combined with experimental 
verification to evaluate the adhesive strength and thus biocompatibility at the interface between 
implant of different materials and bio-cells. Computational simulations includes Molecular 
Dynamics (MD) at the atom-nano scale, Finite Element Analysis (FEA) at the microscopic-
cellular scale, and FEA at the macroscopic scale. Experimental approaches to verify simulation 
results include synthesizing biomaterials (biocomposite), cell culture, atomic force measurement, 
and microscopic fluid shear force measurement and high resolution electronic and nanoprobing 
techniques. - At the atom-nano scale The interface chemical composition of several kinds of 
synthesized biocomposites of implant is designed. Molecular dynamics (MD) calculations are 
conducted. This low-scale analysis will allow pre-selection of the chemical compositions with 
high interfacial adhesions through comparing the shearing strength and normal strength of 
different implant materials. In addition, physical parameters such as interfacial kinetic frictional 
coefficient and viscosity are assessed to consider the effect of chemical composition and the 
body fluid effect on these parameters. - At the microscopic (micron, single cell) scale Based on 
the measured basic surface geometric parameters and the MD-obtained physical parameters (e.g. 
kinetic frictional coefficient and viscosity), the FEA at the microscopic (micronmeter) scale are 
conducted to obtain the corresponding maximum shear stresses. Comparing the calculated 
maximum shear stress with the measured shear strength by a rotating rheometer, the modified 
physical coefficient of the synthesized material and shear strength criterion are obtained, and 
thereafter, the coupled surface geometry-cell residency effects on the physical coefficient and 
strength criterion can be accounted for. - At the macroscopic scale (> mm, multiple cells) The 
research work is still in the above two scales. After it is successful, the result will be used to 
design the interface morphology for the implant which include waviness, roughness, and porosity 
based on the measured basic surface geometry of the material coupon at the microscopic scale. 
FEA simulation, based on the confirmed physical coefficients, will be conducted to investigate 
the stress distribution with multiple cells in the model, and conduct a parametric study of 
asperities, waviness and porosities of the designed interface morphology on shear strength to 
optimize and enhance the interfacial adhesion.  
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ABSTRACT 
 
Stress relaxation (SR) experiments were performed on a Zr-Sn-Nb alloy over a broad 
temperature range from room temperature to 600, and at each temperatures SR were carried 
out at three different strain levels (0.02, 0.05, 0.08), in order to reveal the elementary 
dislocation process responsible for the plastic deformation, and investigate the dynamic strain 
aging (DSA) of zirconium alloys. The stress reduction ratio at the end of the relaxation 
increases with temperature, except that at 300 there exhibits a local minimum in the 
temperature dependence of the ratio, which is attributed to DSA. The plastic deformation rate 
as a function of time during relaxation was determined by the analysis of the experimental 
data. It is interesting to note that the plastic deformation rate at 300 is always lower than 
those at other temperatures at the same relaxation time. It indicates that DSA could reduce the 
plastic deformation rate during SR, and thus restrains the relaxation of stress of the alloy, as 
demonstrated by the minimum in the temperature dependence of the stress reduction ratio. 
The activation volume associated with the deformation process was found from the 
relationship between stress and relaxation time. A noticeable maximum value appears at 300 
when the activation volume plotted against the temperature, which is indicative of DSA [1], 
and this value decreases as the strain level increases. However, outside the temperature region 
of DSA, the activation volume remains almost constant for each strain levels. Based on the 
analysis of the strain dependence of the activation volume, the rate controlling deformation 
mechanism is identified as the overcoming of solute atoms by dislocations, and the 
dislocation density is found to have an effect on DSA. 
 
[1] S. I. Hong, W. S. Ryu, and C. S. Rim, “Thermally Activated Deformation of Zircaloy-4”, 

Journal of Nuclear Materials, 120, 1(1984). 
 
Financial support from the National Nature Science Foundation of China (Grant No. 
50601024) is gratefully acknowledged. 

Multiscale mechanics

322



Development of Statistically Equivalent Representative Volume Elements for 
Multi-scale Modeling of Composite Materials  

 
 

Ted Vaughan, Conor McCarthy1 

 
 

Composites Research Centre, Materials & Surface Science Institute, Dept. of Mechanical 
and Aeronautical Engineering, University of Limerick, Ireland. 

 
1 Corresponding Author: conor.mccarthy@ul.ie  

 
 

ABSTRACT 
 
 
The non-uniform spatial arrangement of fibers in composite materials leads to an irregular stress 
distribution in the microstructure allowing localized microscopic damage mechanisms to occur 
more easily.  In order to accurately predict such damage mechanisms, statistically equivalent 
representative volume elements (SERVE) are often used. A hard-core random model, where 
fibers are randomly placed, is generally used to create these SERVE’s but such models do not 
reproduce the microstructure well for high volume fraction composites, such as those used for 
high strength applications in the aerospace industry. In this paper, a novel method is developed 
to generate SERVE’s for high volume fraction composites.  This method uses experimentally 
measured nearest neighbor distribution functions to define inter-fiber distances. The resulting 
SERVE is found to show very similar geometric distribution functions (i.e. radial distribution 
and nearest neighbor distribution) to the actual microstructure. The proposed algorithm is 
currently being used to generate micromechanical finite element models for multi-scale damage 
prediction of composite structures.   
 
 
1. Introduction 
 

Due to their high specific strength and stiffness fiber reinforced composite materials are widely 
used in the aerospace industry. These materials allow for lighter structures leading to lower fuel 
consumption or increased payload. In order to predict material damage and failure in composite 
structures, computational methods are now being used extensively to reduce some of the 
experimental testing needed for certification of aircraft. However, finite element (FE) modeling 
of fiber reinforced composites presents a challenge due to the fact that they are heterogeneous, 
brittle and can display non-linear constitutive behavior.  Failure in composite materials is a result 
of microscopic damage accumulation in the fiber and/or the matrix leading to a multitude of 
macroscopic failure modes.  In order to more accurately predict microscopic damage 
accumulation and its effect on the macroscopic structure, multi-scale modeling approaches have 
begun to emerge [1].  These methods couple macro-mechanical models with micro-mechanical 
models, which represent the fiber and matrix phases discretely, in the form of a representative 
volume element (RVE). 
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The microstructure of a composite material exhibits a non-uniform spatial arrangement of fibers, 
with apparently random fiber rich and fiber denuded regions. The presence of these leads to an 
irregular stress distribution across the microstructure, thus allowing microscopic damage 
mechanisms to occur more easily [2].  For accurate damage prediction at the microscopic level, a 
statistically equivalent representative volume element (SERVE) is commonly used.  In an 
SERVE, the distribution functions of parameters reflecting local morphology should be 
statistically equivalent to the overall microstructure [3]. In generating an SERVE, the hard-core 
random model has been extensively used whereby the fibers are considered as non-overlapping 
disks, whose centers have been distributed randomly and uniformly in a square region of finite 
size.  However, this model has been shown to have an upper volume fraction limit in the region 
of 50% and is therefore unsuitable in representing microstructures of high-volume fraction 
composites [4].  An alternative method [4] has been developed to achieve a high volume fraction 
SERVE based on a variation of the hard-core random model.  The resulting fiber arrangement 
from this theoretical approach is characterized by a random distribution.   

This paper presents a novel method of generating high volume fraction SERVE’s using statistical 
microstructural data found from experimental analysis.  The material under study is HTA/6376, a 
high strength carbon fiber reinforced plastic (CFRP) used extensively in the aerospace industry.  
The SERVE’s are currently being used to generate three-dimensional FE models to predict 
microscopic damage mechanisms in CFRP using a multi-scale approach and this will be reported 
on in a later publication.  

 

2. Digital Image Analysis  
 
Buehler® Omnimet® imaging software was used to analyze 35 images captured from the CFRP 
microstructure, such as that shown in Figure 1(a), each measuring 320 μm × 240 μm. The 
software automatically detects a color ‘threshold’ level within each image and this allows it to 
identify the fibers, as shown in Figure 1(b).  Data such as volume fraction, fiber diameter and 
fiber centre (i.e. x, y) coordinate is extracted. From this, statistical data characterizing the spatial 
arrangement of the fibers was generated, specifically the nearest neighbor distribution function 
[5] which is found by calculating the distance for each fiber to its closest neighbor and 
expressing the results as a probability density function.  Similarly, in this work the 2nd nearest 
neighbor distribution function is found using a similar approach. 
 

     
             (a)                (b) 

Figure 1: Sample area chosen for image analysis (320μm × 240μm), (a) actual micrograph, (b) 
computed microstructure based on a color threshold algorithm  
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3. Program Development 
 
The program was written in Matlab and its purpose is to generate high volume fraction SERVE’s 
of a CFRP using the following procedure, 
1. A random point is created having coordinates (x1, y1), lying in a sample square area, A; the 

size of A being defined by the user.  The diameter, d1, of the surrounding fiber is drawn from 
a lognormal distribution fitting the experimentally measured diameter distribution.   

2. Two additional points, (x2, y2) and (x3, y3) are created, which form the centers of the first and 
second nearest neighbors of the first fiber.  The distance from (x1, y1) to (x2, y2) and from (x1, 
y1) to (x3, y3) are assigned from the first and second nearest neighbor distribution functions, 
respectively. Both points are oriented at angles chosen randomly between 0-360º.  Fiber 
diameters are assigned from the same lognormal distribution as before. 

3.  The program then moves on to the second fiber and assigns its first and second nearest 
neighbors, (x4, y4) and (x5, y5), for which the near neighbor distances are drawn from their 
respective distributions and fiber diameters are assigned as before. 

4. The program then moves on to the third fiber and the same procedure is carried out.  This 
process is repeated for each fiber thereafter until the sample area, A, is full. 

5. The program performs numerous checks at each iteration to ensure that none of the fibers 
overlap with one another.  If overlaps occur, orientation angles or inter-fiber distances are 
reassigned until a suitable configuration is found.  

 
 
4. Generated SERVE Candidates 
 
Shown in Fig. 2 are two possible SERVE candidates generated by the Matlab program 
measuring 100μm×100μm and 170μm×170μm.  The generated SERVE’s show evidence of fiber 
clustering and matrix rich regions similar to those found in the actual microstructure (shown in 
Fig. 1a).  The volume fraction of the larger SERVE is 60.4% which compares well with the 
actual experimentally determined volume fraction of 59%.  The nearest neighbor distribution 
function computed form the larger SERVE in Fig. 3 shows a similar trend to the experimental 
distribution with slight deviations evident where peak distributions occur.  Radial distribution 
functions [5] for both the generated SERVE’s and the CFRP microstructure have also been 
compared (not shown) and give good correlation.  The program is therefore capable of 
generating statistically equivalent representations of the CFRP microstructure under 
investigation.  This new approach can easily be applied to other types of composite materials 
once the relevant distribution functions had been found using the image analysis procedure as 
above. 

       
       (a)     (b) 

Figure 2: Generated SERVE candidates, (a) 100μm × 100μm (b) 170μm × 170μm 
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Figure 3: Nearest neighbor distribution functions 

 
 
5. Conclusions and Future Work 
 
A novel method has been developed in order to generate accurate representations of a composite 
material microstructure with a high volume fraction.  The microstructure of a CFRP composite 
was experimentally characterized in terms of fiber volume fraction, fiber diameter and nearest 
neighbor distributions.  Using this data a program was developed which can generate SERVE’s 
with high volume fractions with and the same geometric features as the experimental samples, as 
determined using statistical analysis. The program is currently being updated to ensure that the 
generated SERVE’s are geometrically periodic for subsequent micromechanical damage 
modeling using finite element analysis.  
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ABSTRACT

The present work is devoted to the micromechanical modeling of elastic properties of trabecular bone by us-
ing the Eshelby and Hill polarization tensors of an isolated ellipsoidal inhomogeneity embedded in an infinite
matrix. The problem is entirely geometrized and is treated in terms of averages of Walpole’s components of
the fourth-order tensors describing the problem [2]. The Ponte Castañeda scheme is given to investigate the
effect spatial distribution of the ellipsoidal inclusions on the effective behavior [3]. Architecture of trabecu-
lar bone can be quantified with increasing accuracy using quantitative computer tomography, which opens
the perspective of estimating the associated mechanical properties from 3D image reconstructions. For this
purpose, the most promising variables are volume fraction and fabric [4].

1. Introduction

The overall properties of multi-phasic materials first depend on the relative concentrations of their consti-
tutive phases, they also crucially vary with the spatial arrangement of these phases. Continuous theoretical
and experimental progress in the fields of microstructural characterizations have gone along with improve-
ments in modelling as well as in measuring materials (physical, mechanical, etc.) properties. This has resulted
in continuous gain for optimizing composite structures devoted to specific applications. In particular, mor-
phological analyses can now be directly obtained from 3D informations issued from high resolution X-rays
tomography [4].
In the present work, we aim at formulating a micromechanical model, based on the Eshelby equivalent
inclusion [1], to evaluate the effective elastic properties of multi-phasic materials [3,5], and in which the
morphology anisotropy of constituent phases is investigated by means X-ray micro-tomography.

2. Formulation of a micromechanical model of anisotropic multi-phasic materials

2.1. Basic principles of the modelling

Consider a representative volume element (R.E.V.) Ω of a composite consisting of N families of ellipsoidal
inclusions made up of phases r (r = 1, ..., N) with elastic stiffness tensors C

(r), which are distributed
randomly in a continuous matrix with elastic stiffness tensor C

(m). The inclusions of phase r are all taken
to be identical in shape and orientation. Under a uniform macroscopic strain field E be prescribed on the
boundary of the R.E.V., Ponte Castañeda and Willis [3] proposed a rather novel approach to separate the
spatial distribution of inclusions from the inclusion shape by means of two Hill-type tensors (P(s)

w associated
with the shape and Pd corresponding to the spatial distribution). The strain concentration tensor takes then
the following form:

A
(r) = A

(r)
w

:

[
f (m)

I +
N∑
s=1

f (s)

[
I + (P(s)

w
− Pd) : (C(s) − C

(m))
]

: A(s)
w

]
−1

(1)

where f (m) and f (r) are, respectively, the matrix and inclusions volume fraction and where:

A
(r)
w

=
[
I + P

(r)
w

: (C(r) − C
(m))

]
−1

and A
(s)
w

=
[
I + P

(s)
w

: (C(s) − C
(m))

]
−1

(2)
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In this development, the inclusions are taken to be ellipsoidal, and their spacial distribution is also will be
assumed to exhibit ellipsoidal symmetry (i.e P

(s)
w = Pd), the expression (1) reduces to:

A
(r) = A

(r)
w

:
(
f (m)

I +
N∑
s=1

f (s)
A

(s)
w

)
−1

(3)

and the effective stiffness tensor writes:

C
hom = C

(m) +
N∑
r=1

f (r)(C(r) − C
(m)) : A(r)

w
:
(

f (m)
I +

N∑
s=1

f (s)
A

(s)
w

)
−1

(4)

2.2. Hill tensor for an arbitrarily oriented ellipsoidal inclusion

The starting point for the calculation of the Hill tensor is the following definition (see [5,3]):

P
(r)
w

=
det(Z(r))

4π

∫
|ξ|=1

H
(m)(ξ) | Z(r)ξ |−3 dS(ξ) (5)

for which the integration is on the unit sphere centered at the origin of space (ξ1, ξ2, ξ3), defined by | ξ |= 1.
Z(r) is the shape tensor characteristic of the equivalent inclusion of the r phase and H (m)(ξ) is defined by:

H
(m)
ijpq

(ξ) = ξi
[
K(m)(ξ)

]
−1

jp
ξq

∣∣∣
(ij)(pq)

and K
(m)
ip

(ξ) = C
(m)
ijpq

ξjξq (6)

called the acoustic tensor and which depends on the tensor of elasticity C
(m) of the matrix. The notation∣∣

(ij)(pq)
indicates the symmetrization with respect to the couples (i, j) and (p, q). We are interested here in

the case of an isotropic linear elastic solid matrix weakened by N families of isotropic ellipsoidal inclusions
aligned in a given direction n (by convention we choose n = e3). The shape of inclusions correspond to
a spheroid characterized by its normal n, radius a and the average half-opening c. Then, the composite
material exhibits transversely isotropic symmetry. Then, by using (6), the expression (5) of the Hill tensor
becomes:

P
(m)
ijpq

=
wa3

4π

∫
|ξ|=1

ξi
[
K(m)(ξ)

]
−1

jp
ξq

∣∣∣
(ij)(pq)[√

a2(ξ2
1 + ξ2

2 + w2ξ2
3)

]3 dS(ξ) (7)

where w =
c

a
is the aspect ratio of inclusions. In general, we set [5]:

P
(r)
ijpq

=
1
4
(M (m)

ijpq
(ξ) + M

(m)
jipq

(ξ) + M
(m)
ijqp

(ξ) + M
(m)
jiqp

(ξ)) (8)

with:

M
(m)
ijpq

(ξ) =
w

4π

∫
|ξ|=1

ξi
[
K(m)(ξ)

]
−1

jp
ξq[√

ξ2
1 + ξ2

2 + w2ξ2
3

]3 dS(ξ) (9)

According to the isotropy of the solid matrix, the stiffness tensor, C(m), reads C
(m) = 3κ(m)

J + 2μ(m)
K,

where κ(m) and μ(m) represent the bulk and shear moduli of the matrix, respectively. Then, we have:

M
(m)
ijpq

(ξ) =
w

4π

∫
|ξ|=1

(
ξiδjpξq

μ(m)
[√

ξ2
1 + ξ2

2 + w2ξ2
3

]3 − 3κ(m) + μ(m)

μ(m)(3κ(m) + 4μ(m))
ξiξjξpξq[√

ξ2
1 + ξ2

2 + w2ξ2
3

]3
)

dS(ξ) (10)

For materials which are transversely isotropic, it is interesting for standard notations and the associated
tensorial representations to introduce the Walpole’s base which is constituted of a set of direction-related
fourth-order tensors E

i, i = 1, .., 6 [2]. By using this algebra, any transversely isotropic fourth-order tensor
can be expressed as a linear combination of these six elementary tensors. Therefore, for inclusions r oriented
with respect to the e3 axis, Walpole’s components of P(r) are given by [5,2]:

P
(r)
w

=
(
M

(m)
1111 + M

(m)
1122,M

(m)
3333,M

(m)
1111 −M

(m)
1122,

1
2
(M (m)

2332 + M
(m)
3223 + 2M

(m)
2323),M

(m)
1133,M

(m)
1133

)
(11)

These components may be integrated analytically [3] and its are given in Appendix A.
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3. Homogenized effective properties of porous materials

3.1. Mean Intercept Length method for the measurement of inclusion volume fractions

In this section, we aim at generalizing the formalism described in the previous sections to incorporate
microstructural characteristics of inclusions phases by means of the Mean Intercept Length (MIL) method.
The computation of the MIL consists of the sampling of intersections between a sampling grid and the
pores/matrix interface as a function of the grid’s orientation n by the following expression:

MILpores(n) =
∑

L(n)
N(n)

(12)

where
∑

L(n) is the total length of the sampling grid and N(n) is the number of intercepts sampled at
orientation n. Moreover, Harrigan [4] showed that the mean intercept lengths in all directions in a three-
dimensional porous material would be represented by an ellipsoid and would therefore be relied to a positive
definite second rank tensor H in the direction n = (θ, φ) by the following equation:

MILpores(n) = l̄(n) =
1√

n⊗ n : H
(13)

For a family of ellipsoidal inclusions r characterized by its normal n and radius a, we can compute its aspect

ratio as w =
l̄(n)
2a

. Then, the volume fraction of the rth inclusions family is approximately expressed as:

f (r) =
4π

3V

l̄3(n)
8w2

(14)

Thus, for a fixed aspect ratio and by using the equation (13), the total volume fraction of all inclusions is
given by:

fp =
1
4π

∫ 2π

0

∫
π

0

4π

3V

l̄3(n)
8w2

sin θdθdφ =
π

3w2V

1
√

λ3λ1

(15)

where λi are the eigenvalues of the fabric tensor H and V the porous material volume.

3.2. Homogenized effective properties of porous materials

Then, the Walpole’s components of the effective stiffness tensor C
hom of the elastic porous materials are

given by:
C
hom = (2κhom

p
, nhom, 2μhom

p
, 2μhom

n
, lhom, lhom) (16)

where the expression of these components is computing by means of (4), (15) and (A.1). and where we
consider that κr � 0 and μr � 0 for porous materials.
The conventional longitudinal Youngs moduli is given by:

En = nhom −
(lhom)2

κhom
p

(17)

Figure 1 illustrates the variation of the effective longitudinal Young’s modulus En of the trabecular bone
(normalized by the matrix Young’s modulus) with respect to the inclusion volume fraction fp and the
inclusion aspect ratio w. According to this figure, we can find that the shape and orientation of inclusions
has the significant effect on the longitudinal Young’s modulus. This classical result provides a first validation
of the developed approach. Obviously, it will be interesting to proceed to a more complete validation, for
instance by performing experimental data of elastic moduli.

4. Conclusion

A micromechanical method coupled to experimental morphological analyses obtained from high resolution
X-ray tomography, has been proposed to predict the effective properties of porous biological materials. The
model incorporates the micro-structural parameters like inclusions shape, orientation, distribution and vol-
ume fraction. The computed results show that the influence of inclusions volume fraction on the macroscopic
properties depends closely on the microstructures of the composite.
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Figure 1. The variation of the normalized longitudinal Young’s modulus with the volume fraction of ellipsoidal inclusion for
various values of the aspect ratio.

Appendix A. Hill tensor for spheroidal inclusion

The Hill tensor for spheroidal inclusions with aspect ratio w embedded in an isotropic matrix, can be
written, by using (10), in the form [3]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
(m)
1111 + M

(m)
1122 =

[7J(w)− 2w2 − 4w2J(w)]μ(m) + 3[J(w)− 2w2 + 2w2J(w)]κ(m)

4(1− w2)μ(m)(4μ(m) + 3κ(m))

M
(m)
3333 =

[6− 5J(w)− 8w2 + 8w2J(w)]μ(m) + 3[J(w)− 2w2 + 2w2J(w)]κ(m)

2(1− w2)μ(m)(4μ(m) + 3κ(m))

M
(m)
1111 −M

(m)
1122 =

[15J(w)− 2w2 − 12w2J(w)]μ(m) + 3[3J(w)− 2w2]κ(m)

4(1− w2)μ(m)(4μ(m) + 3κ(m))

1
2
(M (m)

2332 + M
(m)
3223 + 2M

(m)
2323) =

2[4− 3J(w)− 2w2]μ(m) + 3[2− 3J(w) + 2w2 − 3w2J(w)]κ(m)

4(1− w2)μ(m)(4μm + 3κ(m))

M
(m)
1133 =

(μ(m) + 3κ(m))[−J(w) + 2w2 − 2w2J(w)]
4(1− w2)μ(m)(4μ(m) + 3κ(m))

(A.1)

where J(w) takes the following forms:

J(w) =
w

[
arccos(w)− w

√
1− w2

]
(1− w2)

√
1− w2

for w < 1 and J(w) =
w

[
w
√

1− w2 − cosh−1(w)
]

(w2 − 1)
√

1− w2
for w > 1

for spheres (w = 1) we take limw→1 J(w) =
2
3
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ABSTRACT 
 
The dusty plasma is a good experimental model for studying the properties of non-ideal systems and for 
proofing existing empirical models and numerical results, because, owing to their size, dust particles may 
be videofilmed, which significantly simplifies the use of direct diagnostic methods. This plasma is a partly 
ionized gas with negatively or positively charged (~1000-100000 e) dust particles of micron size (~ 1-10 
mcm) that may form quasi-stationary plasma-dust structures similar to a liquid or a solid. In view of this, 
dusty plasma may be experimentally investigated on a kinetic level with high temporal and spatial 
resolution in terms of the appropriate plasma frequency (~ 10 Hz) and particle separation (~ 100-1000 
mcm). Investigations were directed on the study of dusty plasma structures and dynamics on kinetic level 
under action of different external forces (visible and uv radiation, magnetic and thermal fields, electron 
beam) in glow rf and dc discharges. Results of experimental study of the dusty plasma kinematic viscosity 
and the diffusion are presented. The experiments were performed in plasma of a capacitive rf discharge 
with the particles of different sizes. A uniform flow of a dusty plasma liquid was experimentally realized 
under laser beam action, and the results of analysis of the obtained data made it possible to estimate the 
viscosity coefficient of a dusty plasma liquid. Experimental examination of the Einstein-Stokes relation 
between the viscosity and diffusion constants is carried out. The results of a comparison of the measured 
diffusion and viscosity constants with the existing data of numerical simulation are considered. The 
influence of high magnetic field on dusty plasma structures is now of great interest in the field of dusty 
plasma physics. In the present work the rotation of the dusty clouds and anomalous dust acceleration near 
the discharge tube wall in strong magnetic field was observed. The dynamical processes in dusty plasma 
cloud were studied under action of electron beam. The action of electron beam effects on dusty plasma 
parameters such as interparticle distance, mean dust velocity and coupling parameter. The results are given 
of an experimental investigation of heat transport processes in fluid dusty structures in rf discharge 
plasmas under different conditions: for discharge in argon, and for discharge in air under an action of 
electron beam. The analysis of steady-state and unsteady-state heat transfer is used to obtain the 
coefficients of thermal conductivity and thermal diffusivity under the assumption that the observed heat 
transport is associated with a thermal conduction in dusty component of plasmas. The temperature 
dependence of these coefficients is obtained, which agrees qualitatively with the results of numerical 
simulation for simple monatomic liquids. Experimental investigations of structures of monodisperse dust 
particles in dc low-pressure glow discharge at temperatures of liquid  4.2 K) are presented. SuperM 77 K 
and liquid helium Mnitrogen dense boundary-free dust structure moved in the discharge at 4.2 K was 
observed. Structural and dynamic characteristics of the cryogenic dust structures were measured.  
 
This work was supported by the Russian Foundation for Basic Research (Grants No.06-02-17532, No. 
06-08-01584 and No. 07-02-13600).  
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ABSTRACT 
 
Molybdenum disulphide (MoS ) is the most commonly used solid lubricant coating in 
aerospace applications. In this work, we develop new empirical many-body potentials for Mo 
and S systems and examine nano-scale friction between sliding MoS  surfaces using 
classical molecular dynamics (MD) simulations. In particular, MD simulations of Mo 
cross-linked MoS  interfacial sliding at various loads, temperatures and sliding directions are 
carried out. The loads and friction forces are extracted to calculate the friction coefficient of 
the MoS  as a function of temperature, and the results are compared to experimental 
pin-on-disk measurements of MoS  coatings and AFM measurements on single crystal MoS2 
surfaces. The results from both the DFT calculations and the MD simulations help us to better 
understand the origins of lubricity on MoS .  
 
This work was supported by AFOSR-MURI grant FA9550-04-1-0367. 
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ABSTRACT

This work deals with the micromechanical modelling of semicrystalline polyethylene at large de-
formations. Polyethylene is today one of the most versatile, durable, and economical polymeric
materials. Its many uses range from plastic bags to automobile and aircraft parts. Polyethylene pos-
sesses a complex microstructure in which molecules arrange themselves into two distinct physical
structures: the crystalline and amorphous phases. Using Continuum Damage Mechanics theory,
the challenge is the prediction of the mechanical behaviour and degradation processes of semicrys-
talline polyethylene considering a detailed description of the microstructure. To illustrate the for-
mulation, the proposed model is used to predict the mechanical response and damage evolution of
a polyethylene material under uniaxial tension loading conditions, and the numerical results are
compared with the experimental data reported in the literature.

1. Introduction

Significant progress has been made in both experimental and modelling aspects of the deformation
mechanisms of polymeric materials. In the literature, a number of articles deals with experimental
observations and testing methodologies to understand the links between the molecular and macro-
scopic properties. Nevertheless, to the authors’ knowledge, no numerical model has focused on the
interpretation of the structural degradation processes taking place in the material microstructure.
The constitutive equations proposed herein consist essentially of introducing the concepts of Con-
tinuum Damage Mechanics to describe the rupture of the intermolecular bonds of the crystalline
structures. The approach used assumes damage occurs only in the crystalline phase, i.e., degra-
dation of the amorphous phase is ignored. The material morphology is simplified as a collection
of inclusions comprising the crystalline and amorphous phases with their characteristic average
volume fractions. The crystalline phase is considered as the assembly of molecules arranged into
an orthorhombic lattice structure, kept together by van der Waals forces. In the model, Continuum
Damage Mechanics provides a framework for describing fragmentation caused by the crystallo-
graphic debonding. On the other hand, the amorphous phase is modelled within a thermodynamic
framework. Hardening is considered and associated to different molecular configurations arising
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during the deformation process. The inclusion behaviour is found by applying some compatibil-
ity and equilibrium restrictions along the interface plane. The behaviour of the material on the
large scale is determined by considering uniform stresses and suitable boundary conditions in the
aggregate.

2. Crystalline Phase Model

Ignoring elastic behaviour and assuming crystallographic slip as the microscopic process con-
trolling deformations, deformation rate Dc

ij is determined as the sum of the contribution from
all the slip systems. Conveniently, a pseudo-linear relationship between the microscopic devi-
atoric stress Scij and deformation rate Dc

ij is expressed by mean of a compliance tensor Mijkl as
Dc

ij = MijklS
∗
lk, where due to covalent bond stability, the deviatoric stress is partitioned additively

into an unconstrained S∗ij and a constrained S̃ij stress; that is, S
c
ij = S∗ij + S̃ij [1].

Considering the failure of van der Waals bonds along the slip systems, a damage variable is intro-
duced to characterize the material loss of load-carrying capacity. To describe the damage process,
it is assumed that once the critical resolved shear strength is exceeded, an irreversible rearrange-
ment of the microstructure occurs and the number of bonds decreases. The degradation process is
described mathematically by a scalar variable Ωα related to the fraction of atomic debonds as

Ωα =
Current number of atomic debonds
Initial number of atomic bonds

(1)

The four-order compliance tensor can be written as (See details in [2])

Mijkl = γ̇0
∑

α

1

(1− Ωα)gα

∣∣∣∣∣ S
∗
mnR

α
nm

(1− Ωα)gα

∣∣∣∣∣
n−1

Rα
ijR

α
kl (2)

where α represents the slip system index, γ̇0 is a reference shear strain, gα is the reference shear
strength, and n is the rate sensitivity inverse. Rα

ij = sym(nαi s
α
j ) is the symmetric part of the

Schmid orientation tensor, where nαi and sαi are the slip normal plane and the slip direction.

It is postulated that damage occurs when resolved forces are high enough to overcome the bonds
that hold molecules together into a coherent structure. Assuming that slip system degradation
varies from one system to another and depends only on the local stress state, the following damage
evolution law is introduced

Ω̇α = Ω̇0

∣∣∣∣∣ S∗ijR
α
ij

(1− Ωα)gα

∣∣∣∣∣
m

(3)

where Ω̇0 andm denote the reference damage rate and damage rate sensitivity, respectively.
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3. Amorphous Phase Model

For the amorphous phase, the constitutive equations are based on a previous phenomenologi-
cal model [3]. The deformation rate Da

ij results from the weak interaction forces between the
molecules. The driving stress is defined as the difference between the deviatoric Cauchy stress Saij
and a back stress Ha

ij generated by the entangled molecular network. Using a power law relation-
ship and an associated flow rule, the material law is given by

Da
ij = γ̇0

(
τa
τ0

)n−1 (
Saij −Ha

ij

τ0

)
(4)

where γ̇0 is the reference strain rate, τ0 is the amorphous shear strength, and τa is the resolved shear
stress, given as τa =

√
1
2
(Saij −Ha

ij)(S
a
ij −Ha

ij).

The amorphous phase hardening is modelled as a back stress governed by changes in the molecule
configurational entropy. Using non-Gaussian chain statistics and the eight-chain model [4], the
constitutive equation for the back stress tensor is given as

Ha
ij =

CR

3

√
3N

B2kk
L−1

⎛
⎝

√
B2kk
3N

⎞
⎠ (Bij − 1

3
B2kkIij) (5)

where CR is the shear hardening modulus, N is the average number of rigid links, Bij is the left
Cauchy-Green strain tensor, and L(x) = cosh(x) − 1/x is the Langevin function.

4. Composite Inclusion Model

Let us consider an aggregate of inclusions representing some material point subjected to a macro-
scopic velocity gradient L̄ij . From the macroscopic deformation tensor D̄ij = sym(L̄ij), appro-
priate boundary conditions are derived to be imposed on the inclusion aggregate. To determine the
aggregate stress response S̄ij , it is necessary to compute the inclusion stress tensors Siij by using
the weighted average of the crystalline Scij and amorphous Saij responses. The stress fields within
each phase are calculated from the respective constitutive model and from the conditions enforcing
compatibility and equilibrium across the phases interface. Global equilibrium within aggregate en-
sures that the corresponding macroscopic stress S̄ij equals the volume average of the local stresses
Siij .

5. Numerical Simulations and Conclusions

To demonstrate the capability of the model to describe the stress-strain behaviour and damage
evolution of a semicrystalline polyethylene material, a numerical test is carried out under constant
velocity gradient L̄22 = 0.001s−1. The simulation results are compared with two previous vis-
coplastic models and experimental data, as illustrated in Fig. 1(a). It is seen that the predictions
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Figure 1: (a) Equivalent stress versus equivalent strain behaviour,
(b) Maximum damage versus equivalent strain for the eight slip systems

are in agreement with the experimental data and that the proposed model is able not only to de-
scribe larger strains than the previously proposed models, but also to represent the complete range
of deformations. The evolution of the damage in the eight slip system is shown in Fig. 1(b). The
larger damage values are displayed in the (010)[001], (110)[001], and (11̄0)[001] planes, all of
them corresponding to chain slip systems. The lower damage value is observed in the (100)[001]
systems.
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ABSTRACT 
 
Piezoelectric materials generate electrical power when subjected to mechanical loading. 
Hybrid power generation, i.e. the use of two or more different power supply methods can, if 
done effectively, improve the lifetime (sustainability) and efficiency of single-source power 
supply systems such as batteries, fuel cells etc. Regenerative hybrid piezoelectric energy 
harvesting systems are envisioned for applications requiring lengthy cycle life, such as 
implantable devices, wherein 20 year life-times are desirable. The ability of piezoelectric 
devices to capitalize off of inherent device movements and acoustic wave production, offer 
opportunities to continuously charge secondary sources of power such as batteries, which 
could potentially increase host device operational lifetime until the active materials of the 
battery are exhausted or the piezoelectric material crack or break. This work will focus on 
modeling of composite piezoelectric devices comprised of nano-scaled particles and/or fibers, 
and comparison of their performance to homogenous and composite devices comprised of 
micron scaled particles and fibers. 
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ABSTRACT 
 
Particle modified polypropylene (PP) compounds have been widely used in recent years, but 
still their mechanical behavior is not fully understood. Furthermore, investigations on semi-
crystalline polymers below the glass transition temperature have not been carried out. Hence, 
in this research work the main focus was to characterize the micromechanical deformation 
during tensile loading of talc and glass bead filled PP at various testing temperatures. 
Moreover, this investigation was conducted over 5 magnitudes of strain rate to determine the 
influence of particles on viscoelasticity of the compound. The particles were characterized by 
SEM pictures to determine their size distribution and in case of talc also their aspect ratio. In 
order to determine the volumetric response of the compounds and to calculate Poisson’s ratio 
a full filled strain analysis tool was applied. Thus, it was possible to determine the volumetric 
dilatational behavior up to and beyond the yield point. The results show that rigid particles 
increase the tensile modulus compared to neat PP at all temperatures investigated. Results 
calculated by means of micromechanical theories i.e. shear lag theory or the Eshelby theory 
are in good agreement with the experimental data. Due to the nonlinear viscoelastic and 
plastic deformation of polymers at the yield point the situation is much more difficult to 
describe with common models found in literature. Above the glass transition temperature the 
particles lead to an increase of the yield stress whereas at lower temperatures a decrease of 
the yield stress could be determined. This effect is attributed to the ductile to brittle transition 
of the matrix at the glass transition temperature. A detailed description of this effect will be 
given in the paper. Furthermore, micromechanical models were applied to predict the 
compound behavior and compared to the experimental values.  
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