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Forward 
 
The field of multiscale modeling of materials promotes the development of predictive 
materials research tools that can be used to understand the structure and properties of 
materials at all scales and help us process materials with novel properties. By its very 
nature, this field transcends the boundaries between materials science, mechanics, and 
physics and chemistry of materials. The increasing interest in this field by 
mathematicians and computational scientists is creating opportunities for solving 
computational problems in the field with unprecedented levels of rigor and accuracy. 
Because it is a part of the wider field of materials science, multiscale materials research is 
intimately linked with experiments and, together, these methodologies serve the dual role 
of enhancing our fundamental understanding of materials and enabling materials design 
for improved performance. 
 
The increasing role of multiscale modeling in materials research motivated the materials 
science community to start the Multiscale Materials Modeling (MMM) Conference series 
in 2002, with the goal of promoting new concepts in the field and fostering technical 
exchange within the community. Three successful conferences in this series have been 
already held: 
 

� The First International Conference on Multiscale Materials Modeling (MMM-
2002) at Queen Mary University of London, UK, June 17-20, 2002, 

� Second International Conference on Multiscale Materials Modeling (MMM-2004) 
at the University of California in Los Angeles, USA, October 11-15, 2004, and  

� Third International Conference on Multiscale Materials Modeling (MMM-2006) 
at the University of Freiburg, Germany, September 18-22, 2006. 

 
The Fourth International Conference on Multiscale Materials Modeling (MMM-2008) 
held at Florida State University comes at a time when the wider computational science 
field is shaping up and the synergy between the materials modeling community and 
computational scientists and mathematicians is becoming significant. The overarching 
theme of the MMM-2008 conference is thus chosen to be “Tackling Materials 
Complexities via Computational Science,” a theme that highlights the connection 
between multiscale materials modeling and the wider computational science field and 
also reflects the level of maturity that the field of multiscale materials research has come 
to. The conference covers topics ranging from basic multiscale modeling principles all 
the way to computational materials design. Nine symposia have been organized, which 
span the following topical areas: 
 

� Mathematical basis for multiscale modeling of materials  
� Statistical frameworks for multiscale materials modeling  
� Mechanics of materials across time and length scales  
� Multiscale modeling of microstructure evolution in materials  
� Defects in materials  
� Computational materials design based on multiscale and multi-level modeling 

principles  
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 Multiscale modeling of radiation effects in materials and materials response under 
extreme conditions  

 Multiscale modeling of bio and soft matter systems  
 
The first five topical areas are intended to cover the theoretical and computational basis 
for multiscale modeling of materials. The sixth topical area is intended to demonstrate the 
technological importance and industrial potential of multiscale materials modeling 
techniques, and to stimulate academia-laboratory-industrial interactions. The last two 
topical areas highly overlap with the earlier ones, yet they bring to the conference distinct 
materials phenomena and modeling problems and approaches with unique multiscale 
modeling aspects. 
 
This conference would not have been possible without the help of many individuals both 
at Florida State University and around the world. Of those, I would like to thank the 
organizing team of MMM-2006, especially Professor Peter Gumbsch, for sharing their 
experience and much organizational material with us. I also thank all members of the 
International Advisory Board for their support and insight during the early organizational 
phase of the conference, and the members of the International Organizing Committee for 
the hard work in pulling the conference symposia together and for putting up with the 
many organization-related requests.  Thanks are due to Professor Max Gunzburger, 
Chairman of the Department of Scientific Computing (formerly School of Computational 
Science) and to Florida State University for making available financial, logistical and 
administrative support without which the MMM-2008 would not have been possible. The 
following local organizing team members have devoted significant effort and time to 
MMM-2008 organization: Bill Burgess, Anne Johnson, Michele Locke, Jim Wilgenbusch, 
Christopher Cprek and Michael McDonald. Thanks are also due to my students Srujan 
Rokkam, Steve Henke, Jie Deng, Santosh Dubey, Mamdouh Mohamed and Jennifer 
Murray for helping with various organizational tasks. Special thanks are due to Bill 
Burgess and Srujan Rokkam for their hard work on the preparation of the proceedings 
volume and conference program. 
 
I would like to thank the MMM-2008 sponsors: Lawrence Livermore National 
Laboratory (Dr. Tomas Diaz de la Rubia), Oak Ridge National Laboratory (Dr. Steve 
Zinkle) and Army Research Office (Drs. Bruce LaMattina and A.M. Rajendran) for the 
generous financial support, and thank TMS (Dr. Todd Osman) for the sponsorship of 
MMM-2008 and for advertising the conference through the TMS website and other TMS 
forums. 
 
I would also like to thank all plenary speakers and panelists for accepting our invitation 
to give plenary lectures and/or serve on the conference panels. Lastly, I would like to 
thank the session chairs for managing the conference sessions.  
 
Anter El-Azab 
Conference Chair 
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Theory of Nematic and Smectic Elastomers 
 
 

T.C. Lubensky 
 
 

Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd. Street, 
Philadelphia, PA 19104-6396 

 (E-mail: tom@physics.upenn.edu) 
 
 
 

ABSTRACT 
 
Liquid crystal elastomers [1] are remarkable materials that exhibit the elastic properties of rubber 
and the orientational properties of liquid crystals.  The coupling between orientation and strain, 
however, gives rise to properties that are unique to these elastomers.  Both nematic and smectic 
elastomers in their idealized forms are formed via the spontaneous breaking of a continuous 
rotational symmetry, and, as a result, they exhibit Goldstone modes whose manifestation is the 
vanishing of certain elastic moduli and soft elastic response in which finite strains can be 
produced with vanishing stress.  Generally the preparation of monodomain samples in the 
laboratory requires the imposition of a preferred orientation direction via a second crosslinking 
under uniaxial stress.  Samples prepared in this way exhibit semi-soft rather than soft behavior 
with a nearly flat stress-strain curve for strains between lower and critical values. This talk will 
introduce a simple model for semi-soft nematic elastomers and discuss its global phase diagram 
[2], establishing that semi-soft response is associated with the existence of a continuum of equal 
energy biaxial states. It will also introduce models for smectic elastomers and discuss the 
unusual nature of soft response that results when a uniaxial smectic-A elastomer undergoes a 
transition to a biaxial smectic-C elastomer [3].  Finally some comments will be made about the 
difference between Martensitic and soft or semi-soft response, all of which can occur in liquid 
crystal elastomers.  
 
 
[1]  M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University Press,    

Oxford, 2003). 
 [2] Fangfu Ye, Ranjan Mukhopadhyay, O. Stenull, and T.C. Lubensky, Semi-soft Nematic 

Elastomers and Nematics in Crossed Electric and Magnetic Fields , Phys. Rev. Lett. 98, 
147801/1-4 (2007). 

 [3] O. Stenull and T.C. Lubensky, Soft Elasticity in biaxial smectic and smectic-C elastomers , 
Phys. Rev. E 74, 051709/1-24 (2006). 

 
 
This work has been partially supported by the NSF MRSEC (DMR-05-20020) and by NSF Grant 
DMR 0804900. 
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Athermal Statistical Mechanics for Material Elastostatics and Deformation 
 
 

A.H.W. Ngan 
 
 

Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road,  
Hong Kong, P.R. China 

(Email: hwngan@hku.hk)  
 
 

ABSTRACT 
 
 

A stressed solid with random microstructure represents an interesting analogue to a thermal 
system at equilibrium  the structural randomness qualify for a description by an entropy, and 
there is also the usual strain energy. Such a system, however, is athermal since the real (Kelvin) 
temperature can play little role. Instead, an effective temperature  exists to represent the relative 
importance of entropy versus energy. Finite-element modeling of the force distribution in 
stressed low-density elastic networks confirms the existence of such an effective temperature in 
the description of these structures. The jumpy flow behaviour of materials observed during 
nanoindentation experiments, and the formation of dislocation patterns in crystals are further 
examples which can be modelled by the same statistical mechanics framework. A canonical 
ensemble can also be constructed to calculate the properties of an athermal system. 
 
 
1. Introduction  Similarly R  Structures 
 
This paper deals with the mechanics of materials in which the micro

randomly disturbed versions of a regular triangular grid, but these two structures, although 
different in detail, are rather similar in terms of their overall randomness. On the other hand, the 
pattern in Fig. 1(c), also a disturbed triangular grid, has evidently very different randomness. One 
therefore expects the two patterns in Fig. 1(a) and (b) to have similar properties such as overall 
elastic stiffness or strength, whereas the pattern in Fig. 1(c) should have distinctively different 
properties.      
 
There are many other materials or structures which are similarly random. The arrangement of 
grains or beads in a pile under gravity may be random but the randomness may be similar in 
different locations within the pile. Many natural or biological materials such as wood and 
trabecular bone also have similarly random microstructures. Synthetic low-density polymeric or 
metal foams, which find applications in arenas such as tissue engineering, shock absorption or 
heat transfer, are also examples. The spatial arrangement of microstructures in synthetic 
materials, such as the patterns of precipitates or dislocations in metals or alloys, may also be 
similarly random.  
 

Statistical methods for material deformation and failure

98



      

 
Figure 1. Three computer-generated networks. (a,b) have the same  value (see 
text) of 0.5, and (c) has value of 10. 

 
Modern materials modelling tools such as finite or discrete element methods, or the newly 
developed dislocation dynamics method for calculating metal deformation problems, are very 
powerful, but they are deterministic in nature. While they can be used to calculate one given 
structure (e.g. Fig. 1(a)) at a time, we do not know whether the properties calculated would apply 
to a further similarly random structure (e.g. Fig. 1(b)). One indeed expects a particular class of 
materials, even with similar randomness, to exhibit variations in properties, and so a probabilistic 
rather than a deterministic description should be used. In this whole argument, one also needs to 
find a robust way to quantify the randomness of a generic type of structure. For example, when 
we say the networks in Fig. 1(a) and (b) have the same randomness while that in Fig. 1(c) has a 
higher randomness, what exactly do we mean by that?  

 
The aim of the present paper is to summarize the au e above issues. The 
central idea is to use statistical mechanics concepts to provide the probabilistic description 
needed. However, the scope is limited to properties that are athermal, i.e. not affected by thermal 
effects. As such, the aim is not a theory for glass or amorphous materials, which has to focus on 
the random arrangement of the individual atoms. The focus here is on microstructures that are 
much larger than atomic scale so that they exhibit degrees of freedom which are decoupled from 
atomic vibrations. For example, the straining of the struts in the networks in Fig. 1 when the 
latter are stretched should be athermal as long as the stretching is done in a quasi-static manner.  
 
 
2. Athermal Entropy and Temperature    
   

2.1  Elastic Networks 
 
Consider a very large network, such as one of those shown in Fig. 1. Due to the structural 
randomness, an athermal entropy S can always be defined. Suppose )( fP  is the distribution of 
the force f in the struts, S can be defined as 

 

dffPfPS )](ln[)( .     (1) 

Statistical methods for material deformation and failure

99



 
Each force f produces a work done )( fW , and so the energy of the network is given by  
 

dffPfWU )()( .      (2) 

 
At equilibrium U should be minimized, but since a given structural randomness is to be 
maintained, S should be constrained. The problem thus becomes the variational principle of 
minimizing the free energy SUF , i.e. 
 

0dSdUdF        (3) 
 

where  is mathematically a Lagrange multiplier and physically a temperature-like quantity, 
albeit the fact that it has nothing to do with the real Kelvin temperature T of the network. 
 

 
 

Figure 2. Axial force distribution of 2-D perturbed networks under hydrostatic loading [1,2]. 
 
  
The point symbols in Fig. 2 are finite-element (FE) calculations of the axial force distribution of 
a series of 2-D strut networks constructed with different randomness [1,2]. The randomness here 
is defined by a quantity rd, where 0dr  corresponds to a regular square network, and a network 
with 0dr  is constructed by randomly displacing each grid point of the square network within a 
region )()( LrLr dd , where L is the periodic spacing in the regular pattern. The randomness of 
the network thus constructed increases with dr , and the example shown on the right side of Fig. 
2 has an dr  value of 0.4. It can be seen that the FE calculated force distribution becomes more 
spread as the structural randomness increases, as expected. The curves in Fig. 2 are the 
theoretical results from eqn. (3). Such a variational procedure leads to a family of  )( fP  curves 
each characterized by a specific value of .   in Fig. 2 is an inverse measure of the athermal 
temperature , and it can be seen that by choosing a correct value of  or , excellent matching 
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with the FE results can be obtained. The theory involving eqn. (3) is thus verified. The contact 
force distribution in granular packings has also been studied using a similar approach [1,2].   
 
 

2.2 Plasticity Phenomena 
 
Plasticity usually occurs in sporadic bursts with random sizes in the sub-micron range. A number 
of reports have indicated that the burst size  follows scale-free statistics, but for confined 
situations such as nanoindentation, large bursts are unlikely to occur out of the very small 
deformation zone, and experiments have shown that the burst size in this case tends to follow 
scale-limited statistics of the form )exp(~)( kP  [3], see Fig. 3(a). This exponential form of  

)(P  is consistent with a maximum entropy principle, where dPPS )](ln[)( , subject 

to the condition that the mean burst size dP )(  is fixed. 
 

 
Figure 3. (a) Occurrence statistics of strain bursts during nanoindentation of a Zr-based 
metallic glass by a micron-sized indenter [3]. (b) Predicted probability distribution of 
dislocation density at various  values [4]. 
 

 
A further example where statistical mechanics may be applicable is the formation of dislocation 
patterns during crystal plasticity. In this case, the mutual interaction of dislocations in a pattern 
constitutes an energy functional of the dislocation density function  which describes the pattern. 
When  is small, an approximate form for this energy functional is [4]:  
 

oe EdEEPEU
0

)(1 ,  where   
min

2

ln
4

)( bE ,  (4) 

 
Eo is a constant, min corresponds to the outer cut-off distance, 1,  is shear modulus and b 
Burgers vector. Entropy is dEEPEPkS ee )(ln)( , and because )()4/()( 2 EPbP e , 
eqn. (3) leads to   
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lnexp cAP ,     (5) 

 
where /  is the dislocation density normalized by the mean value, and A and c are 
normalizing constants. Fig. 3(b) shows plots of eqn. (5) at different  values. As very low values 
(e.g. 0.01) of  , which represents noise in the system, )(P  is singlely peaked at the mean 
density value, indicating a homogeneous distribution of dislocations. At intermediate values of ,  

)(P  becomes bimodal with peaks at a high and a low density, corresponding to cellular 
patterning. At high values of  (> 392), the high-density peak disappears and )(P  becomes 
power-law distributed, indicating fractal patterning. Different types of patterning are thus 
predicted depending on the noise level.  
 
 
3. Constant-(N,V,T, ) Ensemble within Harmonic Approximation 
 
Within the harmonic approximation, it is always possible to write the Hamiltonian H of a solid as 
two independent thermal and mechanical components, i.e. mechtherm HHH , where thermH  and 

mechH  can accept any energy value without affecting one another. An ensemble of A such solids 
is therefore a dual-bath ensemble shown in Fig. 4, where the thermal and the mechanical 
components do not interact, i.e. each system accepts a mechanical and a thermal component of 
energy, separately drawn from the pools of mechEA  and thermEA  respectively, where mechE  and 

thermE  are the average mechanical and thermal energies per system. It follows that the total 
entropy of the ensemble is mechthermens SSS  where thermS   and mechS  do not interact. Applying 
the First Law to the ensemble, any heat flow dQ into the ensemble interacts with thermS  only, and 
any external mechanical work dU on the ensemble interacts with mechS  only. As a result, the 
equilibrium conditions are given separately by: 
 

0thermdSTdQ  and  0mechdSdU .    (6) 
 
The second condition above is the ensemble version of the equilibrium condition in eqn. (3), and 
it enables the mechanical temperature  to be defined properly. Since all ensembles with the 
same average strain energy mechE  per system are characterized by the same  , and systems can 
have the same average strain energy, when subject to the same external conditions, only if they 
have the same structural randomness,   is therefore an indicator for structural randomness, i.e. 
two systems have the same   if their structures are similarly random. As an example, the 
network patterns in Fig. 1 were generated by a Monte Carlo scheme consistent with the constant-
(N,V, ) ensemble discussed here. This ensemble approach has also been applied to investigate 
dislocation patterning behaviour [5]. 
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Figure 4. Dual-bath ensemble 

 
 
4. Conclusions 
 
An athermal statistical mechanics framework has been proposed to model the mechanics of 
materials with random microstructures. This is applicable to model the elastostatics of random 
structures, as well as to discrete plasticity phenomena.  
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ABSTRACT

Dislocations in crystals induce incompatibility between elastic strains. We show how this can
be related to the densities of crystal dislocations in individual slip systems and how the incom-
patibility causes nonlocal coupling with elastic strains in the evolving microstructure. The order
parameter and thus the corresponding stress fields develop long-range tails that correspond to the
superposition of elastic stress fields of individual dislocations. Hence, the stress field of any dis-
tribution of dislocations in an arbitrarily anisotropic medium can be calculated just by minimizing
the free energy. The corresponding continuous field of Peach-Koehler forces is then employed in
a Fokker-Planck equation for the dynamics of the dislocation density. This approach represents a
simple self-consistent scheme that yields the evolutions of both the order parameter field and the
continuous dislocation density.

1 Introduction

A mesoscopic description (nano to micrometer) of physical processes in solids, where atomic
length scales merge with those of the continuum, represents a crucial and perhaps most challenging
aspect of understanding material behavior. This arises, for example, during displacive (martensitic)
phase transformations where the distortions associated with the strains in unit cells and intra-
unit cell displacements (or shuffles) propagate over larger distances so that competing long-range
effects lead to the formation of inhomogeneities such as interfaces, spatially correlated domains
and complex microstructure. The currently available mesoscopic models for studies of defects
focus mainly on the self-organization of dislocations in spatially homogeneous microstructures.
The statistical models based on the Fokker-Planck equation have been pioneered by Bakó and
Groma [1] and Zaiser [2]. A closer connection with the well-established Kröner’s continuum
theory of dislocations [3] was developed by El-Azab [4] and the formation of sharp dislocation
walls in isotropic media was observed by Limkumnerd and Sethna [5]. Phase field models of
dislocation patterning are usually based on the theory of Khachaturyan [6] where the dislocation
loops are viewed as coherent platelet inclusions.

Our objective in this paper is to incorporate dislocations into the Landau theory to study marten-
sitic phase transformations in materials containing defects. We consider an anisotropic medium
that is described by the elastic constants corresponding to the high-temperature cubic phase. Uti-
lizing Kröner’s continuum theory of dislocations [3], we develop a self-consistent scheme that
allows simultaneous calculation of the microstructure and the evolution of the dislocation density.
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2 Free energy for materials with dislocations

In the following we will consider a square to rectangle phase transformation, where the square
corresponds to the austenite phase stable above Tc and the two variants of the rectangle to the
martensite that is stable below Tc. We identify three order parameters e1, e2 and e3 that correspond
to the three modes of in-plane deformation of the reference square lattice. In particular, e1 =

(ε11 + ε22)/
√

2 measures isotropic dilation, e2 = (ε11 − ε22)/
√

2 the change of shape and e3 = ε12
the change of right angles caused by the shear. For the square to rectangle transformation, e2 is the
primary order parameter and e1, e3 are secondary order parameters.

The nonzero plastic strains induced by the dislocations cause discontinuities in the displace-
ment field and these are removed by elastic relaxation. The elastic components of the strain tensor
are then incompatible with each other and are constrained by ∇×∇×ε = η, where η is the so-called
incompatibility tensor. In the two-dimensional case, the only scalar equation that is not satisfied
identically reads ∂22ε11−2∂12ε12+∂11ε22 = η33, where ∂i j ≡ ∂2/∂xi∂x j. Writing the strains in terms
of the order parameter fields then yields the incompatibility constraint for the order parameters:

∇2e1 − (∂11 − ∂22)e2 −
√

8∂12e3 = η33
√

2 . (1)

The Landau free energy for the martensitic phase transformations is typically constructed using
the harmonic term that follows from the elastic strain energy (terms with e2

1, e2
2, e2

3) augmented by
even higher-order terms of e2 that are allowed by symmetry, and by a gradient term proportional to
|∇e2|2 which accounts for the energy cost for spatial variation of the order parameter [7]. Writing
(1) as G = 0 we include the incompatibility constraint using the Lagrange multiplier λ as

F =

∫
S

[ A2

2
e2

2 +
B
4

e4
2 +

C
6

e6
2︸������������������︷︷������������������︸

floc

+
A1

2
e2

1 +
A3

2
e2

3︸���������︷︷���������︸
fnonloc

+
K2

2
|∇e2|2︸����︷︷����︸
fgrad

+λG
]

dr . (2)

The problem is to calculate the primary order parameter e2 and the incompatibility field η33 (i.e. the
dislocation density) that minimize the free energy (2). Firstly, we look for the minimum of F with
respect to the secondary order parameters e1, e3 and the Lagrange multiplier λ. The stationarity
conditions δF/δe1 = δF/δe3 = δF/δλ = 0 yield e1 and e3 as functionals of e2 and η33. By
substituting these back into (2) the free energy only depends on e2 and η33.

In the Kröner’s continuum theory of dislocations [3], the incompatibility tensor is defined as
η = sym (∇×α), where α is the Nye tensor with components αi j = Bj/S i. Here, B is the so-called
net Burgers vector that is obtained as a vector sum of the Burgers vectors of all crystal dislocations
that comprise the mesoscopic cell perpendicular to xi with area S i. In our two-dimensional case,

η33 = α32,1 − α31,2 (3)

and, therefore, only edge dislocations with their line directions parallel to x3 and the Burgers vector
components along x1 and x2 contribute to this incompatibility. Although the incompatibility (3) is
completely determined by the distribution of the net Burgers vectors B, a connection still needs to
be made between B and the density of crystal dislocations that populate individual slip systems.
Due to the mesoscopic nature of this model, we cannot invoke individual crystal dislocations but
will merely consider their densities in each slip system. This is accomplished by writing

α3i = Bi/S cell =
∑

s

(ns+ − ns−)bs
i , (4)
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where S cell is the area of one mesoscopic cell, the sum is over all the slip systems s, and ns+

and ns− are non-negative densities of crystal dislocations with the Burgers vectors bs and −bs,
respectively. Substituting (4) into (3) yields the sought after connection between the densities of
crystal dislocations and the mesoscopic incompatibility field:

η33 = εi j

∑
s

∂(ns+ − ns−)
∂xi

bs
j , (5)

where εi j is the antisymmetric Levi-Civita tensor.
We can now proceed to construct a numerical scheme that will minimize the free energy (2)

subject to finite dislocation densities ns+ and (or) ns−. We will assume that the time scale of
relaxation of the order parameter is much shorter than that of the dislocation density. The relaxation
of the order parameter field will then be accomplished by the relaxational dynamics

∂e2

∂t
= −Γ δF

δe2
, (6)

where Γ is the mobility coefficient, and during this relaxation we keep the dislocation density fixed.
From the relaxed order parameter field we can calculate the strain field and, using the Hooke’s
law, also the internal stress field. Hence, the components of the Peach-Koehler forces on the
dislocations in each mesoscopic cell can be calculated as Fs±

k = ∓ε jkσ jlbs
l and the corresponding

glide component, Fs±
glide, by projecting the former into the individual slip systems s. In order to

conserve the total Burgers vector in the simulated domain, the dislocation densities are evolved
using the Fokker-Planck equations

∂ns±

∂t
= −D∇ · [Fs±

gliden
s±] . (7)

The individual dislocation densities are propagated through the time step Δt and the corresponding
new incompatibility field is obtained from (5). In the next step we utilize (6) to calculate the order
parameter field e2 that minimizes the free energy subject to this new incompatibility field. This
recursive procedure represents a simple self-consistent scheme for a simultaneous calculation of
the microstructure and the dislocation density.

3 Simulations

We will now utilize the procedure outlined above to study the self-organization of dislocations in a
single crystal of Fe-30at.%Pd below Tc. The simulated domain consists of 128 × 128 mesoscopic
unit cells, each containing 1000×1000 crystallographic unit cells with the lattice parameter 3.8 Å.
Hence, the width of the simulated domain is 48.64 μm. In this material the crystal dislocations re-
sponsible for accommodating plastic strain are those with the Burgers vectors 1/2〈110〉, i.e. in our
two-dimensional case we consider two slip systems, with the Burgers vectors of the dislocations
±1/2[110] and ±1/2[1̄10]. To each mesoscopic cell we initially assign a dislocation density that is
drawn at random from a uniform distribution; this yields the density ρ = 2 × 1014 m−2.

During the minimization the initially spatially uniform dislocation density (Fig. 1a) rapidly
develops alternating dislocation walls that decorate the twin boundaries between different variants
of the martensite (Fig. 1b). This is shown more clearly in the field of the net Burgers vectors
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(a) (b) (c) (d)

Figure 1: Initial (a) and final (b) density of dislocations, where dark regions correspond to low and
bright regions to high |B|, respectively. The final field of net Burgers vectors B is shown in (c). The
final field e2 is shown in (d), where blue and red correspond to the two variants of the martensite
and the twin boundaries to the metastable austenitic phase.

in Fig. 1c. The microstructure (i.e. the order parameter field) corresponding to the dislocation
density in Fig. 1b,c exhibits well-defined twins corresponding to the two variants of the martensite
(Fig. 1d) separated by twin boundaries.

4 Conclusions

The Landau theory outlined in this paper represents the first step in the formulation of a mesoscopic
theory for studying martensitic phase transformations mediated by defects. In the framework of
Kröner’s theory [3] utilized here, the dislocations induce incompatibility between the components
of the elastic strain tensor. The “strength” of this incompatibility is related to the densities of crystal
dislocations in individual discrete slip systems. The coupling between the order parameter field
and the dislocation density introduces competition and frustration in the evolving microstructure
and, therefore, the minimization of the free energy is accomplished simultaneously by the order
parameter field and the dislocation density. This results in formation of correlated dislocation walls
at the twin boundaries. The detailed explanation of this model can be found at arXiv:0806.4564.
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ABSTRACT 
 
Jamming is a transition at which constituent particles of a system stop collectively their 
movement. Experimental observations on a broad class of systems ranging from granular media 
to supercooled liquids show that their dynamics becomes increasingly heterogeneous when 
approaching the jamming transition. This is achieved by tuning a control parameter such as 
temperature, density or the external drive rate. To quantify such dynamics, various methods have 
been introduced in the literature including e.g. the dynamic four-point susceptibility ,14 , 
characterizing correlations across intervals of both space and time. 
 
Dislocation assemblies in plastically deforming crystals with an external stress as a control 
parameter exhibit some of the typical characteristics of a jamming transition, such as slow 
dynamics and scaling features near the jamming threshold. Qualitatively, this can be understood 
to result from a combination of kinetic constraints on dislocation motion due to the underlying 
crystal structure and long range anisotropic interactions between dislocations, which together 
induce metastable jammed dislocation configurations. 
 
Here, we explore further the analogy between simple two-dimensional dislocation ensembles and 
other systems exhibiting jamming, by considering the mean square dislocation displacement, the 
dynamic four point susceptibility ,14 , as well as the displacement distribution as a function 
of a observation time interval . Our results on the behavior of ,14  point towards the 
existence of a growing dynamic correlation length as the jamming threshold is approached 
within the moving phase. Moreover, the displacement distributions of the dislocations seem to be 
characterized by exponential tails, similarly to many other systems with glassy dynamics. 
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ABSTRACT 
 
 

Recent studies have established a tight connection between driven vortex lattices in Type II 
superconductors and plastically deforming crystals. Both the atomistic and the mesoscopic 
behavior of disordered vortex assemblies under the effect of applied external currents implies 
topological rearrangements which involve dislocations and dislocation assemblies and result in 
the emergence of polycrystalline and amorphous states. In this work we emphasize the close 
relation between topological adjustments of the vortex lattice and its electrodynamic response. 
We performed a numerical study of the critical current as a function of the defect density and the 
number of vortices. For weak pinning interactions, the dynamics of dislocation assemblies is the 
relevant mechanism that accounts for the collective motion of the vortex array.  
Dislocations rearrange into grain boundaries, leading to the emergence of polycrystalline order. 
We prove that grain boundary interactions with defects are responsible for a non-trivial 
dependence of critical currents on the average defect density and we are able to corroborate 
previous analytical results that predicted the transition between individual and collective pinning 
regimes. Vortex flow exhibits typical fingerprints of collective dislocation dynamics, such as 1/f 
noise voltage response and history dependence.  
 
 
1. Introduction 
 
A great deal of attention has been recently devoted to the topology of defected vortex lattices in 
type II superconductors and the role of topological defects, such as dislocations, in the 
emergence of disordered phases and critical current anomalies. It is well known that magnetic 
fields penetrate samples of type II superconductors in the form of quantized flux lines, referred to 
as vortices, which would arrange themselves into ordered quasi two-dimensional lattices and 
move under the action of Lorenz-like forces induced by external currents [1]. Quenched disorder 
and thermal fluctuations tend to break long-range order giving rise to disordered phases. The loss 
of topological order is envisaged as the main responsible for abrupt variations in the critical 
current of the driven vortex array. 
 
In the following, we propose a numerical study of the interplay of topology and current transport 
in type II superconductors. We simulate driven vortex polycrystals and assess the relevance of 
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dislocation dynamics to vortex motion and their coupling to quenched disorder. In the case of 
weak pinning interactions, the dynamics of dislocation assemblies proves the relevant 
mechanism that accounts for the anomalous response to an applied current. 
 
 
2. Numerical method and simulation technique 
 
Transport properties in our simulations are quantified by looking at the critical current Jc of the 
vortex array. Topology can be taken care of at any time step by means of Delaunay 
triangulations and diffraction patterns. We simulate vortex dynamics in the presence of an 
external current by numerical integration of the set of Langevin equations: 
 

dri/dt = ij fvv(ri rj)+ ij fvp(ri rj)+ i fL(ri)                                        (1) 
 
where  is the effective viscosity of vortex flow, fvv is the vortex mutual interaction force 
according to the London description of the array, fvp the pinning force exerted by each of the Np 
randomly distributed pinning points as derived from a gaussian potential of range 

corresponding to the coherence length of the superconducting state), and fL the Lorenz force 
associated with the external current. Integration is performed with an adaptive-step- -
order Runge-Kutta algorithm, imposing periodic boundary conditions in 2D space.  We consider 
a 2D superconducting cross section of fixed linear dimension, perpendicular to the external 

B along the z direction, where we locate a set of Nv rigid and interacting vortices 
and the Np fixed and randomly distributed pinning points.  
 
Critical currents are recorded as a function of Np, for different values of the number of vortices 
Nv, which measures the stiffness of the array. Measurements are performed starting from two 
different initial configurations, a vortex polycrystal and a perfect (dislocation-free) vortex lattice. 
The vortex polycrystal is obtained by relaxation of a random vortex array. The system 
recrystallizes until pinning forces start counteracting grain growth. This protocol is 
experimentally known as field-cooling, as it corresponds to a rapid quench of a high temperature 
phase. Vortices remain frozen in a metastable polycrystalline state, where dislocations are mainly 
arranged in low-angle grain boundaries. When starting from a dislocation-free lattice, instead, we 
simulate what is known as a zero field-cooling experiment. Our aim is to assess the role of 
dislocation arrays in the nonlinear response of the vortex lattice (depinning transition) by 
comparing results obtained for the two different initial conditions. 
 
 
3. Results and discussion 
 
Dislocation assemblies prove to affect the nature of the critical response of the system in a 
dramatic way. In dislocation-free lattices, the vortex array starts moving collectively as the 
critical current is reached and its behavior is that of a driven elastic system, close to a continuous 
transition. This is known as elastic depinning of the vortex lattice. By letting the system build up 
dislocations, instead, we recreate what is known in experiments as plastic depinning. Close to the 
threshold, the dynamics is highly heterogeneous, meaning that due to the complexity of 
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dislocation interactions, certain regions show higher mobility, while others remain dynamically 
frozen.  
 
Critical current as a function of the pinning density is shown in Fig.1. We observe that the 
dependence on Np matches the predictions (provided in previous studies [2]) for individual grain 
boundary pinning at low defect density and collective grain boundary pinning at high defect 
density. By increasing the defect density, the response switches from a linear growth (in a region 
where the grain sizes decrease rapidly as Np is increased) to a square root behavior (where grain 
sizes stop decreasing, or equivalently the number of dislocations stops increasing). In order to 
validate the theory of GB pinning, we observe that the critical current for a driven vortex crystal 
shows no crossover behavior instead. It is indeed a well-established result that, in the absence of 
dislocations, pinning of vortex lattices is only collective, for weak enough pinning forces [3]. 

 
Figure 1. Critical current as a function of the number of defects, as obtained for a vortex 
polycrystal and a vortex crystal, for Nv=3120 vortices. Numerical results are compared to 
theoretical predictions for grain boundary pinning. 

  
This proves that GB pinning is essential to explain the dynamics of a vortex polycrystal and that 
plastic depinning can hardly be understood without accounting for the collective nature of 
dislocation dynamics. A further confirmation comes from the scaling of critical currents with the 
number of vortices Nv. Simple arguments suggest the relation Jc=  Np/Nv for individual GB 
pinning [2], where  is a constant. This result is recovered in our simulations, as reported in Fig. 
2.   
 
For a vortex polycrystal, the nature of the depinning transition switches to weakly discontinuous, 
in analogy with what is observed in disordered colloidal crystals [4]. Close to depinning, 
dislocations are created and annihilated at the same rate and no healing is observed. Under these 
conditions, we recorded that vortex flow in the steady state is associated with features such as 1/f 
noise in the voltage response (collective vortex velocity), a fingerprint of collective dislocation 
dynamics [5], as opposed to the washboard peaks observed in driven dislocation-free lattices [6]. 
By increasing the applied current, dislocation densities change (eventually leading to healing for 
very high currents and weak enough disorder) and hysteretic behavior can be spotted by ramping 
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the current up and down above depinning. In fact, dislocation densities affect the magnitude of 
critical currents. Unlike a perfect crystal, a dislocated lattice owns a much larger number of 
degrees of freedom and adapts better to disorder, leading to a higher Jc (see Fig. 1). It is thus 
inevitable that a partial healing at high currents results in a lowered Jc and consequently in 
history dependence and hysteresis. We also observed that for much higher disorder strengths, the 
loss of topological order is such that critical currents exhibit a sharp jump as the defect density is 
increased. The depinning transition becomes strongly discontinuous and the steady state 
dynamics highly heterogeneous. Vortex flow proceeds in a channel like fashion and high drive 
healing is replaced by a smectic phase.  This novel regimes is currently a matter of investigation.  
 
 
4. Conclusions 
 
We have performed numerical simulations of driven vortex polycrystals. The presence of 
dislocation assemblies proved essential to explain the nature of the steady state of vortex flow 
and the dependence of the critical current on disorder. The loss of topological order is 
accompanied by a significant increase in the critical current and several features such as history 
dependence broadband voltage noise find a natural explanation in dislocation dynamics.  

 
 Figure 2. Scaling of the critical current as a function of the number of vortices Nv.   
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ABSTRACT 
 
We study the ground state properties of classical Coulomb charges interacting with a 1/r 
potential moving on a plane which confined by a circular hard wall boundary. The charge density 
in the continuum limit is determined analytically and is non-uniform. Because of the non-
uniform density there are both disclinations and dislocations present and their distribution across 
the system is calculated and shown to be in agreement with numerical studies of the ground state 
(or at least low-energy states) of N charges, where values of N up to 5000 have been studied. A 
consequence of these defects is that although the charges locally form into a triangular lattice 
structure, the lattice lines acquire a marked curvature. The scaling of various terms which 
contribute to the overall energy of the system of charges viz, the continuum electrostatic energy, 
correlation energy, surface energy (and so on) as a function of the number of particles N is 
determined. "Magic number" clusters are those at special values of N whose energies take them 
below the energy estimated from the scaling forms and are identified with charge arrangements 
of high symmetry. 
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ABSTRACT 
 
In condensed-matter physics, crystals are anomalous. Most phases (liquid crystals, superfluids, 

imposed rotation gradient) respond by forming sharp walls on sub-micron scales separating 
grains or cells. These walls are well understood microscopically, but until now science has had 
no simple, continuum explanation for their formation. We've discovered that these walls are 
explained naturally as shock fronts in a continuum theory of plasticity  analogous to the shocks 
formed in theories of sonic booms and traffic jams. Our theory keeps track of the topological 
dislocation density tensor, is derived from the microscopic dynamics using a simple closure 
approximation, and connects directly to engineering descriptions of strain, stress, and rotation on 
longer length scales. We use it to predict a new type of wall (where the dislocation-density 
jumps) that should form in early stages of plastic deformation. 
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ABSTRACT

Crystal plasticity is the result of the motion and complex and effectively non-linear interactions
of dislocations. The collective behavior of dislocations plays a prominent role both for the evo-
lution of dislocation structures and as origin of strain hardening. There is, however, still a major
gap between microscopic and mesoscopic simulations and continuum crystal plasticity models.
Only recently a higher dimensional dislocation density tensor was defined which overcomes some
drawbacks of earlier dislocation density measures. The evolution equation for this tensor can be
considered as a continuum version of dislocation dynamics. We use this tensor to develop a non-
linear theory of multiple slip deformation. Starting from the rate of dislocation cutting events per
volume, we deduce the mean area swept by dislocations between cutting events and the closely re-
lated mean free segment length. If the mean dislocation velocity depends on the mean free segment
length this leads to an important non-linearity which we illustrate by means of a simple example.

1. Introduction

In recent years the understanding and modelling of collective dislocation behavior in crystal plas-
ticity has made significant progress. Nevertheless, continuummodelling of fundamental issues like
strain hardening or dislocation patterning remains an ongoing challenge. Current dislocation based
continuum models of plasticity usually rely on phenomenological assumptions on the evolution of
scalar dislocation densities in the spirit of Kocks [1]. One of the most advanced such models was
introduced by Devincre [2], who developed a strain hardening model from an evolution equation
for the mean free path of dislocations based on Kocks’ equations. In the current work we use a
higher dimensional dislocation density tensor [3] to deduce the mean free path and its evolution di-
rectly from the dislocation state without recourse to phenomenological equations. This leads us to
a non-linear theory of multiple slip. A non-linear theory may be seen as a prerequisite to modelling
– besides work hardening – also the emergence of non-equilibrium dislocation structures [4].
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2. Continuum Dislocation Dynamics

At the heart of the continuum theory of dislocations developed by the authors [3] lies the so called
dislocation density tensor of second order (SODT) α II. This tensor is a natural generalization of
the classical dislocation density tensor to a higher dimensional configuration space. It is closely
related to the phase space densities of dislocations as introduced by El-Azab [5].

If dislocations move by glide only, the SODT is defined on the configuration space Q=M×⋃
β S1β ,

where M denotes the (spatial) crystal manifold, β indicates the slip systems and the S1β are unit
circles of directions in the respective glide planes. A point in Q is considered as composed of a
spatial point p and the angle ϕβ between a direction in the glide plane and the Burgers vector bβ .
We may consider the SODT as a sum of tensors defined for each slip system, i.e. α II =∑β α II

β . On
each slip system, the SODT is defined by a density function ρβ (p,ϕβ ) giving the average number
(per unit area) of dislocations at p with line direction lβ (ϕβ ), and a curvature function kβ (p,ϕβ )
characterizing the average curvature of these dislocations. The functions ρβ and kβ are connected
by the requirement that α II needs to be free of divergence in the configuration space. Although
the curvature kβ does not appear explicitly in the remainder of this paper, we emphasize that its
consideration is indispensable to describe the evolution of the dislocation system [3].

3. From the Rate of Dislocation Cutting to Non-linear Multiple Slip

To discuss the rate of dislocation cutting we only consider two slip systems, β and β ′. Both systems
may be active and the dislocations move with average velocities vβ and vβ ′ , respectively. We then
find the total rate of dislocation cutting events per volume as

Γ̇ββ ′ =
∫

lβ

∫
lβ ′
ρβ

(
lβ
)
ρβ ′

(
lβ ′
)∣∣det(lβ , lβ ′,vβ (lβ )− vβ ′(lβ ′)

)∣∣dlβ ′dlβ =:
∫

lβ

Γ̇ββ ′
(
lβ
)

dlβ . (1)

A derivation of this equation will be given elsewhere. Note that we implicitly assumed the disloca-
tions on different slip systems to be uncorrelated. More generally, the product of the two densities
in the integral would be a pair density function ρββ ′

(
lβ , lβ ′

)
.

On the right hand side of Eqn. (1) we implicitly defined the direction-dependent rate of dislocation
cutting events Γ̇ββ ′

(
lβ
)
. From this we evaluate the mean free area swept by dislocations between

cutting events. For dislocations on glide system β with line direction lβ we find

Aββ ′
(
lβ
)
=
ρβ

(
lβ
)‖vβ (lβ )‖

Γ̇ββ ′
(
lβ
) . (2)

We regard the mean free area swept by a dislocation as the most natural measure for connecting
plastic rates with dislocation microstructure evolution. More commonly one uses in this respect
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either the mean obstacle spacing dββ ′ or the mean free path λββ ′ . Both are comprised in the mean
free area which may be defined as Aββ ′ = dββ ′λββ ′ .

We assume conservative glide and overdamped dislocation motion, i.e. the velocity is considered
proportional to the resolved shear stress τβ in the slip system. Furthermore we make an Orowan
ansatz for the friction stress τ fββ ′ induced by the forest dislocations as τ fββ ′ = aββ ′Gbβ/

√
Aββ ′ ,

with the shear modulus G , and a non-dimensional constant aββ ′ . The effective shear stress is
defined by subtracting the friction stress from the local stress. Hence, the dislocation velocity is

vβ (lβ ) = m|bβ |sign(τβ )
⌊
|τβ |−aββ ′Gbβ/

√
Aββ ′(lβ )

⌋
, (3)

with a dislocation mobility m, the modulus of the Burgers vector |bβ | and the square brackets
acting as �x�= 1/2(x+ |x|). Obviously, this dislocation velocity in general becomes a non-linear
quantity, because it contains the mean free surface Aββ ′ which itself may depend on the velocity vβ .

4. Results

To illustrate possible consequences of the non-linearity contained in the above theory we assume
a strongly simplified distribution of straight dislocations in a fcc crystal. Slip system β is taken
as (111)[1̄10] while β ′ is (111̄)[011]. We consider on β a homogeneous distribution of straight
screw dislocations with line directions ±[1̄10] and on system β ′ a homogeneous distribution of
straight mixed dislocations with line directions ±[112] (each without excess dislocations and with
equal density on both systems). These families are orthogonal to each other. The direction of
motion of the dislocations on β is ±[1̄1̄2], while for the dislocations on β ′ it is ±[1̄10]. That is,
dislocations on β move perpendicular to both the dislocation lines and the direction of motion of
the dislocations on β ′, while the dislocations on β ′ move parallel to the line direction of the β
dislocations. From Eqns. (1)–(3) we then find that the velocity vβ does not depend on the motion
of the dislocations on β ′ and hence is linear in stress after exceeding the friction stress. By contrast,
vβ ′ becomes a non-linear function of stress as it depends on the velocities on both systems. We
introduce dimensionless variables labelled with an underscore by dividing velocities by m|bβ |τ fββ ′

and stresses by τ fββ ′ . For several velocities vβ the velocity vβ ′ is depicted in Fig.1 as a function of
the dimensionless applied shear stress τ ′β .

The velocity vβ ′ shows a jump to a non-zero velocity at a critical stress depending on vβ and
approaches linear behavior for high stresses. This implies that slip on the β system inhibits dis-
location motion on the slip system β ′ (but not vice versa!), leading to some interesting scenarios
and instabilities of the flow process associated with non-Schmid behavior: (i) initial activity on β
can be stabilized beyond the point where the resolved shear stress in β ′ exceeds the one in β – this
kinematic effect adds to the ’conventional’ latent hardening; (ii) symmetrical slip on both systems
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Figure 1: Stress dependence of vβ ′ obtained from Eqns. (1)–(3) at a different velocities vβ .

is unstable as activity on β will render β ′ inactive; (iii) if β ′ is initially active, slip activity may
suddenly switch to β when the resolved shear stress exceeds the critical value for the β system.

5. Summary and Discussion

We sketched a non-linear theory of multiple slip based on a higher dimensional dislocation density
measure. The non-linearity was illustrated for a distribution of straight dislocations moving on
two different slip systems and has been shown to produce interesting instabilities. Our simplistic
example may over emphasize the non-linearity, and it remains to be seen to which extent the effects
persist if more realistic dislocation distributions are assumed. In fact, a weaker non-linearity seems
to be preferable, as dislocation structures only develop in later stages of deformation and strain
hardening seems to be rather insensitive to details of the dislocation structure.
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ABSTRACT 

The statistics of internal elastic fields of 3D dislocation systems is described by probability 
density and pair correlation functions. Numerical results of these statistical measures are 
obtained for typical dislocation configurations obtained by dislocation dynamics simulation. 

1. Introduction 

The deformation of crystals is controlled by the collective behavior of dislocations, which has 
been recently described using the concepts of statistical mechanics [1-3]. In the relevant models, 
the evolution of dislocation density is dictated by the distribution of internal stress field [4-6]. As 
a result, it is important to understand the statistical properties of stress in dislocated crystals. 
Here, we present a statistical description of the internal stress in terms of probability density and 
pair correlation measures. We also generate numerical results of these measures for dislocation 
configurations obtained by the method of dislocation dynamics simulation [7]. 

2. Theoretical and Numerical Analysis 

The internal stress field σ  of a given dislocation configuration in a crystal volume can be 
divided into two contributions. The first contribution is associated with the given dislocation 
configuration assumed to be in an infinite-medium,σ ∞ , and the second is called the image stress, 

imgσ . The latter either arises due to the crystal boundary or it represents the stress field generated 
inside the given crystal volume of interest by dislocations outside of that volume. The stress σ ∞

is calculated using the famous line integral form for the dislocation stress in an infinite domain 
[8]. The stress imgσ is the solution of the following boundary value problem: 

( ) ( ) 0,     with the boundary condition:  ( ) ( ) ( ) ( )img imgr r r n r r n rσ σ σ σ∞ ∞∇ ⋅ + ∇ ⋅ = = − ,          (1) 

where n(r) is the outward unit normal to the boundary. Because of the statistical nature of the 
dislocation distribution inside the crystal, the internal dislocation stress field σ   has a statistical 
character.  The formal connection between the internal field statistics and the dislocation 
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statistics can be described in terms of the probability density function (PDF) of the dislocation 
density. The n-th order PDF of the dislocation density ( )1 , , nf α α⋅⋅⋅  is defined such that   

( ) ( ) 1,,,, 1111
,,

,,

1

1

=⋅⋅⋅⋅⋅⋅
⋅⋅⋅

Ω
⋅⋅⋅
∫∑ nnnn ddrddrrrf n

n

θθθθαα

αα

.                (2) 

In the above, Ω  is the phase space, and ir  and iθ  are, respectively, the position and 

orientation of i-th differential dislocation segment on iα -th slip system. Formally, the PDF ijp

of the internal stress tensor is expressed by 

( ) ( ) ( ) ( )1

1

, ,
1 1 1 1

, ,

, , , , , [ ]n

n

ij n n ij n np r f r r r dr d dr dα α

α α

σ θ θ δ σ σ θ θ
⋅⋅⋅

Ω
⋅⋅⋅

= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∑ ∫o o ,        (3) 

where ( )nnijij rrrr θθσσ ,,,,)( 11 ⋅⋅⋅=  is the stress at point r generated by the n dislocation 

segments and ( ) oo σσ drpij ,  gives the probability to find ijσ  falling in the range [ ]ooo σσσ d+,

at point r. With periodic boundary conditions applied in the dislocation dynamics simulation, the 
distribution of dislocation density and associated internal fields is translation invariant. In this 
case, the PDF for stress simplifies to 

( ) ( ) Vrpp
V ijij ∫= ,oo σσ ,                            (4) 

where V is the simulation volume and ( ) oo σσ dpij  gives the probability to find ijσ  falling in 

the range [ ]ooo σσσ d+,  at a random point. While ( )oσijp  provides the distribution of single 

stress, the inter-dependence between stress values at two distinct points is described in terms of 
the pair correlation 

( ) ( ) ( ) ( ) ( )rrrrrrrC klijklijijkl Δ+Δ+=Δ 22 σσσσ ,               (5)

where >⋅<  denotes the ensemble average—it is equivalent to the volume average here due to 

the translation invariance. We thus have ( )rijσ = ( ) 0=Δ+ rrklσ . The positive (respectively 

negative) values of ( )rCijkl Δ  implies that the stress values at two points separated by rΔ  have 

the same (respectively opposite) signs. 

The ParaDiS dislocation dynamics code [7] has been used to obtain the dislocation configuration 
required for computing internal fields in a BCC crystal loaded in [100] direction. The simulation 
box is a cube of edge L close to 5 microns, which is divided into 30 30 30× ×  volume elements 
for the purpose of computing the internal stress using the finite element method. In computing 
the PDF and pair correlation functions for the stress field, the stress value at the center of each 
volume element is considered and the range of rΔ  in the pair correlations is confined to 
[-0.75L,0.75L] to avoid the edge effect. 
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Figure 1 shows the probability distribution of six stress components for typical dislocation 
configurations generated by ParaDiS code at strains of ε =0.0012 and ε =0.015 and strain rate 
ε& =1/s. It has been found that the distribution of stress components is nearly Gaussian, with zero 
mean value and variances that depend on the strain. The zero mean value is consistent with the 
self-balanced nature of internal stress, and the dependence of variance on strain is due to the 
increase of dislocation density—at high dislocation density, the probability of finding larger 
stress values at a random point is higher. It has also been found that the normal (diagonal) stress 
components have large variances than the shear stresses. 

Figure 1. Sample result for the probability distribution of internal stress of a complex  
dislocation configuration. 

Figure 2 shows a sample pair correlation result for the stress component 23σ  at ε =0.005 (a and 

b) and 33σ  at ε =0.0096 (c and d). The correlation is displayed over the -x yΔ Δ  plane in parts a 

and c, and over the -x zΔ Δ plane in b and d. The strain rate was ε& =10/s. The pair correlation 
exhibits multiple secondary peaks distributed anisotropically in space. These positive correlation 
peaks indicate that the stress mode (tension or compression) at two points are the same. The 
anisotropic nature and the correlation fluctuations in space (and associated wavelengths) are 
similar to the corresponding characteristics of the dislocation density correlation, indicating that 
the natural connection between the distribution of internal stress and the distribution of 
underlying dislocation structure. 

3. Summary 

A theoretical and computational approach for calculating the internal elastic fields of dislocations 
and their statistics has been outlined. The probability density function and pair correlation of 
internal fields are modeled in terms of generalized dislocation density distribution function. The 
numerical simulation of those statistical models is implemented for dislocation configurations 
obtained from dislocation dynamics simulation. The spatial distribution of internal dislocation 
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stress, which is illustrated by the PDF and pair correlations, provides a great deal of insight into 
the origin of formation of various dislocation patterns in deformed crystals. Work is underway to 
incorporate the internal stress fluctuations with the dislocation density fluctuations and exploit 
this connection to complete the statistical description of dislocation and mesoscale theory of 
crystal plasticity. 

Figure 2. Pair correlations of internal stress field for the similar dislocation configuration 
considered in figure 1 above. 
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ABSTRACT 
 
Statistical mechanics studies of 2D systems of straight, parallel dislocations have led Groma et 
al. to a physically sound prototype continuum theory for bridging the micro- and mesoscales of 

s theory takes the form of a hierarchy of interconnected evolution 
equations for different order dislocation densities which needs to be cut at a certain level to 
arrive at a closed theory. It has been clearly demonstrated [1] that cutting the hierarchy at first 
order and utilizing the pair correlation functions of homogeneous dislocation systems leads to a 
theory capable to describe all ensemble averaged physical quantities observed in 2D discrete 
dislocation dynamics (DDD) simulations. The numerical finding that 2D dislocation pair 
correlations are short ranged is decisive for the theory as this is what enables a local theory. 
The authors of the present paper are involved in generalizing Groma's theory to the 3D 
dislocation problem by studying the statistical mechanics of curved dislocation lines [2]. In the 
generalized theory, the range of dislocation pair correlations is expected to play a similar 
decisive role as in the 2D version. The present paper discusses the analytical properties of 
dislocation pair correlation functions numerically calculated from a large number of 3D DDD 
simulations. In particular, the spatial range and history dependence of the conventional and stress 
weighted pair correlation functions will be detailed, continuing the work in [3]. The results will 
be compared to existing analogous simulations [4]. 
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ABSTRACT 
 
The effect of materials heterogeneities onto their failure properties remains far from being 
understood. In particular, in heterogeneous materials under slow external loading, cracks growth 
often displays a jerky dynamics, with sudden jumps spanning over a broad range of length-
scales, as also suggested from the acoustic emission accompanying the failure of various 
materials and - at much larger scale - the seismic activity associated to earthquakes. Presently, 

Mechanics (LEFM). 
In this presentation, we will see how to extend LEFM to derive a stochastic description of slow 
crack growth in heterogeneous media [1]. This description succeeds in reproducing the crackling 
dynamics classically observed. Its predictions will then be confronted to experimental 
observations performed at University of Oslo on the 2D crack propagation within a transparent 
Plexiglas block [2]. All the statistical features are perfectly reproduced. In this description, slow 
crack growth in inhomogeneous media appears as a self-organized critical phase transition. As 
such, it exhibits universal  and, to some extent, predictable  features insensitive to the 
materials nature and the loading conditions. In this respect, we argue that this linear elastic 
stochastic description contains all the ingredients needed to capture the crack dynamics in a 
broad range of situations, from nanostructured materials to earthquakes. Finally, we will discuss 
 and confront to experiments  some predictions of this stochastic LEFM description onto the 

morphology of fracture surfaces [3]. 
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ABSTRACT 
 
We investigate whether anomalous scaling of crack roughness as observed in fuse lattice models 
is a generic feature of two-dimensional crack profiles obtained using discrete lattice models. For 
this purpose, we study the scaling of crack roughness using large scale 2D and 3D beam lattice 
systems. In 2D, our results indicate that the crack roughness obtained using beam lattice systems 
does not exhibit anomalous scaling in sharp contrast to the simulation results obtained using fuse 
lattice systems. That is, the local and global roughness exponents ( loc and , respectively) are 
equal to each other, and the two-dimensional crack roughness exponent is estimated to be loc =  
= 0.64 +/- 0.02. The origin of anomalous scaling in fuse lattice systems appears to be due to 
scalar nature of fuse systems (anti-planar shear model), which readily allows for crack 
branching. We verified this with a simplified crack branching beam model, which indeed 
exhibits anomalous scaling of crack roughness. Removal of overhangs (jumps) in the crack 
profiles however only partially suppresses this anomalous scaling. Furthermore, removing jumps 
in the crack profile completely eliminates the multi-scaling observed in earlier studies. We also 
find that the probability density distribution p( h(l)) of the height differences h(l) = [h(x+l) - 
h(x)] of the crack profile obtained after removing the jumps in the profiles follows a Gaussian 
distribution even for small window sizes (l). Analysis of roughness of fracture surfaces using 3D 
beam lattice systems is currently underway and will be discussed during the presentation. 
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ABSTRACT 
 
 

We formulate a theoretical model of the shear failure of a thin film tethered to a rigid substrate. 
The interface between thin film and substrate is modeled as a cohesive layer with randomly 
fluctuating strength/fracture energy. We demonstrate that, on scales large compared with the film 
thickness, the internal shear stresses acting on the interface can be approximated by a second-
order gradient of the shear displacement across the interface. The model is used to study one-
dimensional shear cracks, for which we evaluate the stress-dependent probability of nucleation 
of a critical crack and the concomitant disorder dependence of interfacial shear strength.  
 
1. Introduction 
 
In this study we investigate the interfacial failure of thin films subject to shear loads. We 
consider films where the interface with the substrate is disordered, such that the interfacial shear 
strength as well as the fracture energy are random functions of position. While most of the 
mechanics literature has focused on the properties of interface cracks in systems where the 
properties of the interface are spatially homogenous, failure of disordered interfaces with 
randomly fluctuating strength has been investigated in a number of papers in statistical physics 
journals [1-4]. Besides obvious applications to materials problems such as shear failure of 
coatings and shear-induced delamination of thin films, the problem at hand has some interesting 
applications in geosciences [5-7], where models similar to the one studied in this paper have 
been applied to the initiation of snow avalanches and landslides.  
 
In the present study we investigate theoretically how random variations of interface toughness 
affect the nucleation of interface cracks. We assume a one-dimensional geometry and evaluate 
the crack nucleation probability as a function of stress, geometry, and the statistical parameters 
characterizing the interfacial strength distribution. The theoretical arguments are validated by 
comparison with numerical simulations. 
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2. Formulation of the model 
 
We consider a thin elastic film tethered to a rigid substrate. The film is loaded in plane shear. 
The interface is modeled as a cohesive layer at z=0, which is characterized by a scalar stress-
displacement relationship )()0,( uzxxy where xy  is the shear stress in the film,  is the 
interfacial shear strength, and  )0,()( zxwxu x  is the displacement across the interface. The 
maximum stress that can be supported by the interface is denoted as M , and the failure energy is 
given by the integral 
 
 0M:d)( uuuwf , (1) 
 
where u0 denotes the characteristic displacement-to-failure. Stress-displacement relationships are 
schematically shown in Fig. 1 for the semi-brittle (full line) and brittle cases (dashed line).  
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Figure 1. Shear strength versus interfacial displacement (schematically); full line: semi-brittle 
behaviour, dashed line: brittle behaviour; dotted line: piecewise linear approximation to the 
semi-brittle case as used in our simulations.  
 
Structural disorder is introduced into the model in terms of statistical variations of M  which is 
considered a stochastic process with prescribed statistical properties.  
 
To analyze crack nucleation and propagation, we have to evaluate the internal stresses associated 
with the interfacial displacement field u(x). The elastic energy functional associated with a 
generic  displacement vector field w(r) is given by 

 rH 322 d)curl()div(
2

)( www  , (2) 

where )21/()22( , and he 
equilibrium equation 

 2 1 grad div 0
1 2

w w . (3) 

We solve Eqn. 3 in Fourier space, imposing along the z=0 plane the boundary condition 
0),()0,( zyx wwxuzxw  and making the crucial assumption that the film thickness D is 

much smaller than the characteristic length of variations in the displacement field: 1Dk  
where k is the wave vector. The elastic energy can then be written as 
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The total energy of the system is obtained by adding to the elastic energy H the work done by the 
shear stresses at the interface:  
 

                                                    
)(

0

EXT d)(d)(
xu

xy uuxuG ,                                            (5) 

 
Minimization of the total energy functional E(u) =G(u)+H(u) leads to the equilibrium condition  

 0)(EXT
2

2

u
x
uI xy , (6) 

 
where the gradient coefficient is given by I = 2D Equations of this type have been 
studied by Aifantis and co-workers in the context of shear and slip bands in metal plasticity (see 
e.g. [8]). It may be noted that in these cases the constitutive relation (Eqn. 6) contains a strain 
variable (shear strain or equivalent strain) in place of the displacement variable u. The 
mathematical structure is, however, the same as in the present problem. 
 
3. Energy of a shear crack and critical crack size 
 
We first consider interfaces with space independent fracture toughness. A mode-II crack is 
assumed to exist along the interface. Such a crack is characterized by a displacement field which, 
for - starts from a value 0u  on the left stable branch of the (u) curve, goes through a 
maximum 1u  which without loss of generality we assume at x=0, and then reverts to 0u  for 

The derivation of the corresponding solutions of Eqn. 6 has been discussed elsewhere [7]. In 
the limit of long cracks (small stresses) we find that the displacement profile is approximately 
parabolic, 

                                                           
I

xl
xu xy

2
)(

EXT22

,                               (7) 

where the parameter l can be interpreted as the crack length. This equation describes the 
displacement profile as long as u >> u0, such that (u)~0. The parabolic profile is complemented 
by two boundary layers where the shear strength (u) goes through the curve depicted in Figure 
1. For a long crack the contribution of these boundary layers to the total energy can be neglected, 
and the energy is approximately given by 

                                                      lw
I

llE fxy 2
3

)( 2EXT
3

     .                                               (8) 

 
This energy has a saddle point at the critical crack length EXT2 xyfc Iwl . Cracks above this 
length are unstable under the corresponding load and lead to interface failure. The energy 
required to create a critical crack is Ec = 4wflc/3. We now proceed to analyse the question under 
which conditions crack nucleation can occur spontaneously in a disordered medium.  
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4. Shear crack nucleation at a disordered interface 
 

M(x) or, 
equivalently, failure energy wf(x). In this case, the energy expression, Eqn. 8, modifies to 
 

  xxFxwxxw
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l
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3
)( 2EXT

3

   ,                                  (9) 

where )2/()( 2EXT IxxF xy  is the effective driving force acting on the edge of a crack of length x.  
 
A sufficient criterion for spontaneous nucleation of a propagating shear crack (starting from the 
position x=0) is given by llE 0)/( or, equivalently, by llwlF f )()( . To estimate the 
probability for this to happen, we assume that the failure energy variations can be characterized 
by a finite correlation length . W
shear strengths in each segment as independent, identically distributed random variables with 
probability distribution P(wf). The condition that the crack can advance across the nth segment 
is )()( nwnF f , the probability for this is P(F( )), and the crack nucleation probability is 
Wnucl = n P(F( )). Taking the logarithm and reverting to continuous variables, we obtain 

   xxFPW d))((ln1ln nucl  .              (10) 

To evaluate this probability we have to specify the probability distribution characterizing the 
variations of interfacial strength. We assume a Weibull distribution with characteristic failure 
energy w0 and modulus : 
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w
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Using the driving force given above, the crack nucleation probability is then evaluated as 
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where s=x/lc is the ratio between the crack size and the size of a deterministic critical crack. 
Hence we obtain that 
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This has the structure of an Arrhenius expression where the activation energy is the energy of a 
critical crack in the system without disorder and the place of temperature is taken by an effective 

kBTeff=4 w0/3g(
Eqn. 12 by ln s  for s<1, and 0 for s>1. In physical terms, this means that only crack sizes up to 
the critical one significantly affect the nucleation probability, which is thus tantamount to the 

g( ) = 
2 . With this approximation, the effective is directly proportional to the 
variance of the Weibull distribution times the correlation length of the strength variations.   
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Nucleation of a propagating crack implies system failure. However, Eqn. 13 cannot be directly 
interpreted as a system failure probability: While Eqn. 13 is evaluated under the assumption that 
the crack starts from the origin, nucleation from any other position would produce a similar 
result. To evaluate the corresponding size dependent correction, we observe that only crack sizes 
up to the critical one affect the nucleation probability. Hence the deterministic critical crack size 
acts as an effective correlation length, and regions that are separated by more than this length 
behave in a statistically independent manner. We may therefore divide a system of length L into 
N=L/lc independent regions and define the stress-dependent system failure probability as the 
probability that, at a given stress, a crack has nucleated in the weakest region. This problem can 
be rigorously addressed using the methods of extreme order statistics. To obtain a simple 
estimate, however, one can simply assume that failure occurs at the stress where the failure 
probability for any given region becomes of the order of 1/N. From this estimate and Eqn. 13, we 
see that the mean failure stress is expected to scale like 

N
Iw

gxy ln
2

)(2 0FAIL                                                       (14) 

 
It is interesting to compare this relationship with the deterministic failure stress of a system 
containing a crack of length l: lIwfxy 2EXT . It is evident that, in Eqn. 14,  the correlation 
length of the disorder plays a very similar role to the crack size in case of a interface without 
disorder but containing a deterministic crack. 
 
5. Comparison with simulation results 
 
To test the above calculations, we use a lattice automaton technique where we evaluate the displacements 
at discrete sites xi on a one-dimensional lattice with lattice constant x.  Accordingly, we replace xxu  in 
Eqn. 6 by the corresponding discrete second-order gradient. Furthermore we approximate the strength-
displacement characteristics by a piecewise linear curve as shown by the dotted line in Figure 1. 
Nondimensional variables are defined through  

 
2/1

M

0

0M

EXT

M

,,
IuX

u
uUST xy  (15) 

such that the average peak strength and fracture energy are by definition equal to 1. Random values for 
the local peak strengths are generated as Weibull distributed random fields with average 1, spatial 
correlation length  and Weibull parameter . Note that the nondimensional values of these two statistical 
parameters, together with the system size, are the only independent parameters of the problem.  
 
The system is slowly loaded by increasing the external stress S from zero in small steps until sites become 
unstable as the local (external plus internal) stress exceeds the local shear strength. The displacement at 
all unstable sites is then increased by a small amount U. New internal stresses are computed for all sites 
and it is checked again where the sum of external and internal stresses exceeds the local strength. The 
displacement at the now unstable sites is further increased, and the process is repeated until the system 
has reached a new stable configuration. Then the external stress is increased again and so on until the 
system has failed completely (Ui>2 for all sites). The corresponding critical stress is recorded, and the 
procedure is repeated for different realizations. Figure 2 shows the results of simulations carried out 
for a nondimensional correlation length of 10, system size 800, and varying Weibull exponents 
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deviation at large  is readily understood by observing that the failure stress for a homogeneous 

here is equal to 1. In the formalism, this effect can be taken into account by accounting, in the 
derivation of the crack properties, for a finite process zone size as discussed by Bazant [9]. A 
more detailed discussion of this problem, and the extension of our treatment to two dimensions, 
will be given elsewhere. 

 
Figure 2: Comparison between calculated and simulated system failure stresses. Data points: 
simulation results (the error bars indicate the variance of failure stresses from 5 simulations), full 
line: Prediction according to Eqn. 14 with g( ) = 2 , dashed line: prediction with numerical 
evaluation of g( ). 
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ABSTRACT 
 
The theory of the strength of specimens with flaws depends on the presence of disorder and the 
intrinsic response of the material. Here, we analyze the fundamentals of the problem using 
scaling theory from statistical physics and extensive simulations of lattice models of fracture, 
both with scalar (random fuse model) and vectorial (spring model, beam model) interactions. We 
present a formula incorporating three important effects: classical Linear Elastic Fracture 
Mechanics for moderate-to-large flaws, the presence of a fracture process zone (FPZ), and the 
intrinsic scaling of the strength of the material at hand. These all, in particular the FPZ, depend 
fundamentally on the presence of disorder [1,2] Extensions including statistical strength 
distributions and the crack growth resistance (R-curve) will be discussed. 
  
 
[1] M.J. Alava, P.K. Nukala, and S. Zapperi, "Role of Disorder in the Size Scaling of Material 
Strength", Physical Review Letters 100, 055502, 2008). 
[2] Mikko J. Alava, Phani KV.V. Nukala, and Stefano Zapperi, "Fracture Size Effects from 
Disordered Lattice Models", arXiv:0804.2224 (25 pages), submitted for publication to 
International Journal of Fracture. 
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ABSTRACT 
 
 
Deformation of a model 2D amorphous solid is studied using molecular dynamics simulations.  
Correlations in displacement derivatives and the statistics of avalanches are studied as the stress 
increases to the peak yield stress and in steady-state shear.  The solids are nearly incompressible, 
so the divergence of the displacement is small.  Striking correlations are observed in the curl of 
the displacement field which quantifies both the magnitude and direction of local shear.  The 
correlations are strongly anisotropic, with shortest range along the compressive and tensile 
directions, and longest range along shear directions.  In steady state deformation, correlations 
decay as a power of wavevector.  Both the prefactor and the scaling exponent vary with direction 
[1].  The scaling exponent has four-fold symmetry, while the prefactor has only two-fold 
symmetry.  This can be explained by considering the Mohr-Coulomb model for plastic 
deformation.  The displacements produced by avalanches are also strongly anisotropic and the 
distribution of the amount of energy dissipated in an avalanche follows a power law. The non-
affine displacement of particles grows diffusively with time, but spatial correlations in 
successive avalanches lead to a diffusion constant that scales linearly with system size [2]. 
 
[1] C.E. Maloney and M.O. Robbins, Long-ranged anisotropic strain correlations in sheared 

amorphous solids  
[2]  C.E. Maloney and M.O. Robbins, Evolution of displacements and strains in sheared 

 Journal of Physics: Condensed Matter, 20, 244128 (2008). 
 
This material is based on work supported by the National Science Foundation under Grant No. 
DMR-0454947 and PHY-99-07949. 
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ABSTRACT 
 
 
Colloids are small particles of the order of a micrometer, suspended in a solvent. Because of their 
Brownian motion, the particles form phases (gas, liquid, glass, crystal) similar to those formed 
by atoms in different states of matter. Due to the much larger length- and time scales compared 
to atoms, colloids can be studied with optical microscopy, making them powerful models for 

 We use colloidal glasses to obtain insight 
into the flow of amorphous materials. In three dimensions and real time, we track the individual 
colloidal particles in a flowing glass, and we visualize structural rearrangements that occur 
during flow. The individual particle trajectories are used to identify regions of non-affine 
deformation, in which shear concentrates. Under slow shear, we observe thermally activated 

between these zones, mediated through their long-range stress field, result in flow, which is 
homogeneous on macroscopic length scales. 
 

Statistical methods for material deformation and failure

134



Defects in Amorphous Solids 
 
 

Craig E. Maloney 
 
 

Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Ave., 
Pittsburgh, PA 15213 (E-mail: craigmaloney@cmu.edu) 

 
 
 

ABSTRACT 
 
 
The identification of the most elementary underlying defects in a material is crucial to 
constructing models which describe the behavior at coarser scales. In crystal plasticity, there is 
universal agreement that these defects consist of dislocations in the crystal. In the plastic 
response of amorphous systems, the situation is not so clear. One emerging point of view is that 
the plasticity in these system is governed by a class of local defects known as shear 
transformation zones. We will discuss various issues related to the identification, 
characterization, and organization of these defects utilizing molecular dynamics simulations and 
statistical analysis of heterogeneity in the local mechanical response of model systems. 
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ABSTRACT 
   
 
Understanding the intermittent peel process  and the accompanying audible noise of an 
adhesive tape has long remained a mystery. Recently, we proposed a model that provides 
a basis for understanding the dynamics of the peel front as also the acoustic emission. In 
the model, the acoustic energy is represented in terms of  Rayleigh dissipation functional 
that depends on the local strain rate.  The model offer explanations for several 
experimental features including the statistics of acoustic signals.  It also exhibits rich peel 
front patterns ranging from smooth, rugged and stuck-peeled configurations; the latter is  
reminiscent of  fibrilar pattern observed in experiments. Even as the model acoustic 
energy is a fully dynamical quantity, it can be quite noisy for a certain set of parameter 
values suggesting the deterministic origin of acoustic emission in experiments.  In order 
to verify these results, we have performed experiments to obtain acoustic signals over a 
wide range of traction velocities. Using standard phase space reconstruction procedure 
we show the existence of correlation dimension as also a positive Lyapunov exponent for 
the range of pull speeds from 3.8 cm/s to 6.2 cm/s. The model provides a basis for 
understanding  several features of the experimental signals including the transition from 
burst type continuous type signal with increasing pull velocity.  

Statistical methods for material deformation and failure

136



Coupled Simulation of Grain Boundary Decohesion and Hydrogen 
Segregation 

 
Mitsuhiro Itakura, Hideo Kaburaki, Masatake Yamaguchi and Tomoko 

Kadoyoshi 
 

Fundamental Studies on Technologies for Steel Materials with Enhanced Strength 
and Functions, Consortium of JRCM (The Japan Research and Development 
Center for Metals),Center for Computational Science and e-Systems, Japan 

Atomic Energy Agency, 110-0015 Taito-ku, Japan 
(E-mail: itakura.mitsuhiro@jaea.go.jp) 

 
 

ABSTRACT 
 

We present a modeling framework and simulation results of hydrogen embrittlement at 
the grain boundary region, in which a finite element model of intergranular crack 
propagation is constructed by incorporating the microscopic model of hydrogen 
segregation effect on the grain boundary decohesion. The final aim of the study is to 
identify the mechanism of delayed failure of welded high-strength steel induced by 
hydrogen, focusing on the microscopic effect of surface energy reduction by hydrogen 
segregation. Using the first principles method, we have estimated the surface energy and 
segregation energy as a function of hydrogen content in a 3 grain boundary of iron. 
From these data, we have derived the cohesive stress-displacement relation for 
separating two atom planes of the grain boundary. Based on these ab-initio results, we 
have predicted that segregation of hydrogen to a grain boundary could lead to an 
embrittlement, and this effect can be enhanced by the segregation of hydrogen to the 
cracked surface. To confirm these predictions, we have simulated simultaneously a 
hydrogen segregation and grain boundary decohesion within a framework of finite 
element method. The result indicates that a critical tensile stress for instantaneous and 
delayed fracture of hydrogen-charged material is approximately 66% and 33% of that of 
uncharged material, respectively. This result is strikingly consistent with experimental 
observations [1]. 
 
 [1] A.R. Troiano: Transactions of the ASM 52, 54 (1960).  
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ABSTRACT 
 
 
We investigate the effect on the crack front roughness of microcrack nucleation ahead of a 
propagating planar crack by numerical simulations of the random fuse model. We consider a 
three dimensional geometry, confining the crack to move along a weak plane. We discuss the 
effect of the sample thickness on the crack roughness and the strength and compare with 
continuum models for crack line depinning. 
. 
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ABSTRACT 
 

. From a fundamental viewpoint, high-temperature plasticity is likely to be the result of 
grain boundary sliding of grains under stationary conditions. More particularly, all existing 
models are based upon lattice or grain boundary dislocation activity, despite the fact that such 
activity has never been observed in many systems, particularly ceramics. This paper outlines a 
new model accounting for high-temperature plasticity without dislocation activity.   
 
 
1. Introduction 
 
A consistent theory of high-temperature plasticity must give account for the following facts:  

1- Deformation must proceed without variation of microstructure. This is an experimental 
fact. 

2- The stress exponent is reported to be equal to 1 in many polycrystalline systems, whereas 
it is commonly equal to 2 in others [1]. Quite recently, it has been reported repeatedly a 
transition from a value of 2 towards 1 when the flow stress or the grain size increases 
[2,3]. 

3- The grain size exponent is usually found to be equal to 2 or 3 in most cases, although 
values of 1 are reported in some of them. 

Since the second half of the last Century, a vast number of publications have proposed different 
high-temperature deformation mechanisms. Reviews on the different models are reported in 
literature [2,3]. In non-pure systems, the glassy-phase is proved to play a central role as a 
medium for species solution, migration and ulterior grain boundary precipitation. A review on all 
models developed for non-pure materials is made by Meléndez et al [4]. 
 

When focused on pure (glassy-phase free) materials, nowadays, two main models are 
invoked: the first one is the Ball-Hutchinson model [5]. This one states that deformation is due to 
intergranular dislocation glide accommodated by dislocation climb at grain boundaries. Such 
model has revealed to be applicable in many metallic and non-metallic systems [6], in which 
Frank-Read source activation is energetically favourable. However, it is obviously inconsistent 
with the absence of dislocation activity in many ceramic systems.  

 
Another classical model which has been considered until now is the one proposed by 

Ashby-Verrall [7]. Such model proposes a topological mechanism for grain boundary sliding 
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with two sequential processes: grain slide is followed by accommodation through diffusion 
species along the grains. Unfortunately this model seems to be inconsistent with experiments.  
 

A new model is outlined here [8]. This model disregards for dislocation activity, and it is 
capable for a consistent explanation of the values of the stress exponent in those systems where 
dislocation activity does not exist.  

 
 

2. Theory 
 
Let us consider a cylindrical-shaped polycrystalline specimen with mean grain size d. We also 
admit that grain motion is uncorrelated at times that are large with respect to the time scale of a 
single event.  

Statistically, a mean flight time, S , can be associated to pure shear motion. This deformation 
is accommodated through lattice or grain diffusion processes during a mean characteristic 
time D . In what follows, use is made of the ratio of these two characteristic times, 

s / D .         
During a given time t, the effective time for shear displacement ( teff) is only the weighted 
average of the pure shear and pure accommodation characteristic times, i.e.:  
 

                                             
Ds

s
eff tt      (1) 

 
The mean displacement per grain ( w ) during a time interval t must be:  
 

DS
eff

s

tdtdw     (2) 

 
The increment of section Sd during that time interval would be given by:  
 

       shearN
t

wRSd 2      (3) 

 
Where Nshear is the number of pure-shear events under steady-state regime.  
 
Now it is possible to find a closed expression for (2) in terms of the stress and temperature if a 
calculation of S and D is carried out. Regarding the second one, it is straightforwardly 
obtained from the diffusion theory [8]:  

kT
D

d
eff

D

2

      (4) 

 
Where  is the atomic volume of the accommodation-controlling diffusing species and Deff is 
the effective diffusion coefficient along the several diffusion paths.  
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After straightforwardly algebra, one can conclude that the steady state strain rate  can be 
expressed as: 
 

 effD
kTd221

2      (5) 

 
The value of  can be calculated provided an expression for s in function of temperature and 
the stress is available. Analytical estimates prove that  is proportional to the applied stress, 
since the glide time has such dependence [8].  
 

3. Discussion and experimental assessment 
 
According to Eqn. (5) a parabolic dependence of the strain rate versus the applied stress should 
expected provided the value of 1. Such condition is consistent with the high-temperature 
domain. A careful analysis of the stress and temperature dependence of the theoretical law given 
by Eqn. (5) is beyond the scope of this paper, and such analysis is thoroughly carried out in [8].  
 
Several experimental assessments are made in [8]. In particular, experimental data from different 
creep tests carried out in yttria tetragonal zirconia polycrystals were fitted to Eqn. (5). Such fit is 
reproduced in  Fig.1 and it is in good agreement with the dependency exhibited in such equation. 
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Figure 1: Numerical fit of experimental data in yttria tetragonal zirconia polycrystals deformed at 
1350ºC as reported in [8]. In such reference it is proved that such fit is consistent with the 
prediction made in Eqn. (5). 
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The main implications of the discussed model can be outlined as follows: 
1-A parabolic dependence of the strain rate versus the applied stress is predicted provided 1. 
Such condition is readily expected in most systems in the high-temperature domain.  
2-The temperature dependence of the strain rate is complex and there is not a simple Arrhenius 
dependence from which an activation energy could be measured. It puts forward in a stress 

 
 
 
4. Conclusions 
 
A model for high-temperature superplasticity explaining is developed. The model is based on 
grain boundary dislocation-free mechanism. Experimental validation is briefly commented.  
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ABSTRACT 
 
In recent years the statistical behavior of plastic deformation has received growing interest. In 
response to the application of external stress, crystalline materials may deform plastically due to 
the collective motion of dislocations. The dynamics of these topological defects is governed by 
kinetic constraints, by elastic long range interactions, as well as by multiplication and 
annihilation processes at short distances. As a result, intricate dislocation patterns may form and 
dislocation motion is strongly heterogeneous in space and time, proceeding in the form of plastic 
avalanches with universal scaling properties. 
 
 
 
Building up upon these premises, one of the many interesting features concerning crystalline 
plastic deformation regards the stress distribution in both jammed and moving dislocation 
arrangements. Here we present simulation results of a simplified model of plastic deformation in 
two dimensions where discrete edge-like dislocations may glide along a single slip system, and 
focus on the statistical analysis of the stress distribution in the resulting dislocation assemblies.  
We first identify clusters of positive and negative stress and compute its size and geometrical 
properties for different values of the external stress applied. As we approach a given stress 
threshold, the distribution of cluster sizes becomes very broad, and we can identify a peak in the 
corresponding second moment of the distribution. We further analyze the scaling properties of 
the cluster correlation lengths on approaching this threshold. The analysis of our results allows 
us to reinterpret previous numerical observations suggesting an underlying dislocation yielding 
transition in the same model from a different and more clarifying viewpoint. 
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ABSTRACT 
 
 
Effect of Stacking Fault Energy on Defect of Accumulation in Stainless Steels X. Li, W. van  
Renterghem, A. Almazouzi SCK.CEN, Reactor Materials Research Department, LHMA, 
Boeretang 200, 2400-Mol- Belgium Stacking fault energy (SFE) is considered as a key 
parameter of materials influencing IASCC in nuclear light water reactor (LWR), because it plays 
an important role in every process of plastic deformation, work hardening and creep behaviors. 
This paper concentrates on the characterization of irradiation damage of 3 model alloys with 
different SFEs under controlled irradiation conditions. The detail information of the 
microstructures, irradiation induced small defect clusters, including their types, natures, densities 
and size distributions, are determined and statisticized by the classic and special TEM diffraction 
techniques. The results are good agreement with other literatures. It is shown that, the stacking 
fault energy (SFE) has strong effect on defect accumulation of irradiated stainless steels. Because 
the SFE has strong effect on both the deformation mechanisms and irradiation induced defect 
accumulation, it is thus expected that the susceptibility of 3 model alloys with different SFE to 
IASCC will be different. 
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ABSTRACT  
 
 
Random fiber networks are broadly encountered in nature. Examples of such systems are the 
cytoskeleton, collagen networks in cartilage, paper, filters etc. Their deformation is dictated by 
the fiber properties and arrangement and is non-affine on mult
behavior on the macroscopic (system level) scale is determined to a large extent by the degree of 
non-affinity. It is currently believed that denser networks and networks in which the fibers have 
vanishing bending stiffness deform affinely. Here we show that these conclusions depend on the 
nature of the measure used to probe the non-affinity [1]. If a strain based measure is used, it can 
be shown that all networks, irrespective of the axial or bending behavior of their fibers are non-
affine. The non-affinity decreases with the observation scale following a power law scaling with 
two regimes: one for length scales smaller than the fiber length, and another for larger length 
scales. The small length scale scaling appears only when the bending stiffness of the fibers is 
significant. The two scaling regimes are places in relation with geometrical features of the 
microstructure.  
 
[1] H. Hatami Marbini, R.C. Picu, Scaling of nonaffine deformation in random semiflexible 
fiber network 77, 062103 (2008). 
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ABSTRACT 

We explore the implications of a recently proposed class of continuum theories of plasticity [1,2] 
that naturally predict the formation of dislocation walls[2]. By using several finite-difference 
schemes (ENO-Godunov, Upwind etc.) for simulating the time evolution of wall patterns, we 
study various dislocation-related phenomena and compare with experimental facts. In particular, 
we incorporate work hardening via a strongly rate dependent slip, and explore the effects of the 
resulting grain and cell morphologies. In addition, we investigate different aspects of grain 
coarsening in an extended continuum theory where the effects of dislocation core energies in the 
continuum limit are taken into account. 

[1] Amit Acharya and Anish Roy, "Size effects and idealized dislocation microstructure at small 
scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: 
Part I", J. Mech. Phys. Solids 54 1687-710 (2006). 

[2] Surachate Limkumnerd and James P. Sethna, "Mesoscale theory of grains and cells: crystal 
plasticity and coarsening", Physical Review Letters 96, 095503 (2006). 

This work currently supported by DOE DE-FG02-07ER45393. 
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ABSTRACT 
 
 
Earlier work has shown that incipient ductile spallation damage in Tantalum samples recovered 
from gas gun experiments exhibits voids connected by regions of localized plastic flow. In a two 
dimensional cross section, these regions and the voids form paths that have a well defined 
roughness. Recently, a serially sectioned series has been performed on a sample which illustrates 
how this roughness develops from the 3D damage field. The sample also exhibits a cavity in 
some of the cross sections. The roughness properties of the 3D damage field and the cavity, as 
manifest in the series, will be analyzed to explain the 2D roughness appearing in the cross 
sections. 
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ABSTRACT 
 
 

Ice is a hexagonal material with a strong viscoplastic anisotropy that deforms essentially by glide 
of basal dislocations. Torsion tests performed with the c-axis parallel to the torsion axis and 3D 
Discrete Dislocation Dynamics simulations suggest dislocation multiplication by a double cross-
slip mechanism. This process leads to a plastic activity that is heterogeneous both in time and 
space. Hard X-ray diffraction experiments and dislocation dynamics simulations reveal a scale-
free intermittent flow and a scale-invariant character of the deformation along the sample with 
long range correlations. 
 
 
1. Introduction 
 

Ice is a crystalline material with an hexagonal crystallographic structure that exhibits a 
strong plastic anisotropy: plastic strain essentially develops by glide of basal dislocations. 
Moreover, when basal glide is active, the strain rate ( ) can be related to the stress ( ) through a 
power-law relationship: 2)T(B [1]. In order to study dislocation dynamics responsible for 
this anisotropy, we perform torsion creep (constant loading) tests on single crystals with the c-
axis that fits torsion axis. In that configuration, basal planes are loaded in pure shear, and screw 
dislocations that accomodates torsion strain are pushed towards the center of the cylinder to form 
twist boundaries. Therefore, if no other glide system is active, this configuration would lead to a 
finite strain, contrary to experimental evidence (Fig. 1).  

Since the applied momentum does not induce any non basal force component, only 
internal stresses can be at the origin of non-basal glide. Moreover, as only screw dislocations are 
needed to accommodate torsion, we suggest a double cross-slip multiplication mechanism by 
way of prismatic slip to explain the increase with time of the strain rate (Fig. 1). With this 
assumption, numerical simulations performed by means of a 3D Discrete Dislocation Dynamics 
(DDD) code show that with this assumption, the plastic flow experimentally observed is well 
reproduced, as well as the strain rate dependence to the stress.  
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Internal stresses caused by dislocations decrease as 1/r and lead therefore to long range 
interactions. Previous work (see e.g. [2] and [3]) has shown that these interactions result in an 
intermittent heterogeneous plastic flow characterized by a scale-free distribution of dislocation 
avalanche sizes and locations. We present here characteristics of these spatial heterogeneities 
evidenced through an original application of hard X-ray diffraction properties and through DDD 
simulations. 

 
2. Experimental data analysis 
 

2.1 The hard X-ray diffraction technique 
 
To investigate heterogeneities along the samples, we carried out hard X-ray diffraction 

experiments in Institut Laue Langevin (Grenoble, France) on radial slats (height~width~20mm, 
thickness~2mm) cut from samples deformed in torsion. This technique described in refs [4,5] 
enables to analyse bulk samples (until several cm of thickness) and is well adapted to study ice 
deformation because of its very low X-ray absorption. Fig. 2a. is a schematic representation of a 
diffraction pattern obtained for a good crystal slightly distorted around c-axis. In this figure, the 
diffraction of basal planes gives an horizontal line (no distorsion) whereas the diffraction of the 
prismatic planes gives an inclined line. The inclination of the line is directly related to the lattice 
distorsion around the c-axis. Moreover, each point of the diffracted line is associated with a well 
defined volume of the sample, it is thus possible to relate the distorion to its position along the 
sample. 

 
 
 
 
 

2.2 Strongly deformed samples 
 

In the case of a strongly distorted crystal, the kinematic diffraction theory is valid and the 
diffracted intensity is proportional to the diffracting volume. Therefore, diffracted intensity 
reflects the local distortions of the crystal since a less distorted part of the sample corresponds to 
a larger volume diffracting at the same Bragg angle.  

Figure 1. Creep curve for an ice single crystal 
(Ø=h=43mm) deformed in torsion at -12°C 

under =0.12MPa at cylinder periphery. 

Figure 2. Diffraction pattern  a) Schematic representation. b) of the prismatic planes for a highly 
distorted sample. The thick line represent what would be obtained for a non deformed crystal. 

Statistical methods for material deformation and failure

149



Moreover, the stronger a sample is deformed, the more the prismatic planes are distorted and 
the more the corresponding relative Bragg angles range will be extended. As for a 
macroscopically homogeneous deformed sample, a linear relationship exists between the 
distortion and its location in the sample, a remarkable feature is that by increasing the 
deformation of the sample, we increase the spatial resolution. For example, a sample with 

=h=43mm deformed at 40% (equivalent to a ~45° torsion angle) offers a spatial resolution 
better than 10μm. Fig. 2b is an example of diffraction pattern for such a deformed sample. 

 Thanks to these two properties, we have access to the local distortion repartition along the 
sample through diffracted intensity. 
 

2.3 Statistical analysis 
 

Since samples are highly distorted, several diffraction patterns obtained by rotating the 
sample stage are needed to reconstruct the whole distortion. In order to avoid the introduction of 
a periodicity induced by this reconstruction, we first remove from the signal trends inherent to 
the experimental procedure. First, we subtract to the signal the background that is due to the 
diffusion of the direct beam. We also get rid of the evolution of the diffracted intensity with the 
Bragg angle ( ) that varies as . 

From this signal (see Fig. 3a), we calculate its autocorrelation function as well as the 
corresponding power spectrum (Fig. 3b-c). 

 

 
 

 
 
This analysis reveals a power law regime of the power spectrum E(f)~f-μ with an exponent 
μ~1.6, slightly different from what was obtained by X-ray synchrotron topography by [6], and 
that extends over nearly 3 orders of magnitude. This shows the scale invariance of the local 
distortions along the sample : these deformation heterogeneities are spatially correlated over 
large distance (more than 1cm), revealing long range interactions between dislocations  
accommodating torsion strain. 
 
2. DDD modelling 
 

Torsion creep simulations were performed by means of an edge-screw model initially 
developped for f.c.c. materials [7] that has been adapted to structure, physical properties and 
dislocation mobility of ice. Cross-slip of screw dislocations is allowed through a stochastic 
algorithm that takes into account the applied stress and internal stresses. For calculation time 
saving reasons, we performed simplified simulations with initially only two planes, each one 
containing one dislocation source among the six that are possible. From these simulations, we 

Figure 3. a) Evolution of the diffracted intensity as a function of its position in the sample. b) 
Autocorrelation function of the same signal. c) Corresponding power spectrum. 
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calculate the displacement fields induced by dislocation motions along a line parallel to the c-
axis, representative of the local distortion. A typical profile is presented in fig 4a. From this 
signal, we calculated the autocorrelation function and the power spectrum given in fig 4b-c. As 
for the experiments, the spatial repartition of the local lattice distortions is scale invariant and 
long range correlated. The exponent of the power-law is μ~1.5 that is consistent with 
experimental results. 

 
 
 
 

3. Conclusions 
  
Both experiments and DDD simulations of the plasticity developed in ice single crystals loaded 
in torsion creep show that plastic strain is heterogeneous. Scale invariance and long range 
correlations characterize this heterogeneity. With the configuration of the tests, this can only 
originate from internal stresses created by dislocations. Long range interactions between 
dislocations at the micron scale trigger cross-slip events, leading to a self-organization of the 
dislocations that determines the macroscopical behaviour. The analysis of deformation 
intermittency  is expected to evidence same characteristics and to be correlated with its scale free 
spatial distribution. 
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Figure 4. a) Displacement fields along the sample obtained by DDD simulations. b) 
Autocorrelation function of the same signal.  c) Corresponding power spectrum. 
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