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Forward 
 
The field of multiscale modeling of materials promotes the development of predictive 
materials research tools that can be used to understand the structure and properties of 
materials at all scales and help us process materials with novel properties. By its very 
nature, this field transcends the boundaries between materials science, mechanics, and 
physics and chemistry of materials. The increasing interest in this field by 
mathematicians and computational scientists is creating opportunities for solving 
computational problems in the field with unprecedented levels of rigor and accuracy. 
Because it is a part of the wider field of materials science, multiscale materials research is 
intimately linked with experiments and, together, these methodologies serve the dual role 
of enhancing our fundamental understanding of materials and enabling materials design 
for improved performance. 
 
The increasing role of multiscale modeling in materials research motivated the materials 
science community to start the Multiscale Materials Modeling (MMM) Conference series 
in 2002, with the goal of promoting new concepts in the field and fostering technical 
exchange within the community. Three successful conferences in this series have been 
already held: 
 

� The First International Conference on Multiscale Materials Modeling (MMM-
2002) at Queen Mary University of London, UK, June 17-20, 2002, 

� Second International Conference on Multiscale Materials Modeling (MMM-2004) 
at the University of California in Los Angeles, USA, October 11-15, 2004, and  

� Third International Conference on Multiscale Materials Modeling (MMM-2006) 
at the University of Freiburg, Germany, September 18-22, 2006. 

 
The Fourth International Conference on Multiscale Materials Modeling (MMM-2008) 
held at Florida State University comes at a time when the wider computational science 
field is shaping up and the synergy between the materials modeling community and 
computational scientists and mathematicians is becoming significant. The overarching 
theme of the MMM-2008 conference is thus chosen to be “Tackling Materials 
Complexities via Computational Science,” a theme that highlights the connection 
between multiscale materials modeling and the wider computational science field and 
also reflects the level of maturity that the field of multiscale materials research has come 
to. The conference covers topics ranging from basic multiscale modeling principles all 
the way to computational materials design. Nine symposia have been organized, which 
span the following topical areas: 
 

� Mathematical basis for multiscale modeling of materials  
� Statistical frameworks for multiscale materials modeling  
� Mechanics of materials across time and length scales  
� Multiscale modeling of microstructure evolution in materials  
� Defects in materials  
� Computational materials design based on multiscale and multi-level modeling 

principles  
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 Multiscale modeling of radiation effects in materials and materials response under 
extreme conditions  

 Multiscale modeling of bio and soft matter systems  
 
The first five topical areas are intended to cover the theoretical and computational basis 
for multiscale modeling of materials. The sixth topical area is intended to demonstrate the 
technological importance and industrial potential of multiscale materials modeling 
techniques, and to stimulate academia-laboratory-industrial interactions. The last two 
topical areas highly overlap with the earlier ones, yet they bring to the conference distinct 
materials phenomena and modeling problems and approaches with unique multiscale 
modeling aspects. 
 
This conference would not have been possible without the help of many individuals both 
at Florida State University and around the world. Of those, I would like to thank the 
organizing team of MMM-2006, especially Professor Peter Gumbsch, for sharing their 
experience and much organizational material with us. I also thank all members of the 
International Advisory Board for their support and insight during the early organizational 
phase of the conference, and the members of the International Organizing Committee for 
the hard work in pulling the conference symposia together and for putting up with the 
many organization-related requests.  Thanks are due to Professor Max Gunzburger, 
Chairman of the Department of Scientific Computing (formerly School of Computational 
Science) and to Florida State University for making available financial, logistical and 
administrative support without which the MMM-2008 would not have been possible. The 
following local organizing team members have devoted significant effort and time to 
MMM-2008 organization: Bill Burgess, Anne Johnson, Michele Locke, Jim Wilgenbusch, 
Christopher Cprek and Michael McDonald. Thanks are also due to my students Srujan 
Rokkam, Steve Henke, Jie Deng, Santosh Dubey, Mamdouh Mohamed and Jennifer 
Murray for helping with various organizational tasks. Special thanks are due to Bill 
Burgess and Srujan Rokkam for their hard work on the preparation of the proceedings 
volume and conference program. 
 
I would like to thank the MMM-2008 sponsors: Lawrence Livermore National 
Laboratory (Dr. Tomas Diaz de la Rubia), Oak Ridge National Laboratory (Dr. Steve 
Zinkle) and Army Research Office (Drs. Bruce LaMattina and A.M. Rajendran) for the 
generous financial support, and thank TMS (Dr. Todd Osman) for the sponsorship of 
MMM-2008 and for advertising the conference through the TMS website and other TMS 
forums. 
 
I would also like to thank all plenary speakers and panelists for accepting our invitation 
to give plenary lectures and/or serve on the conference panels. Lastly, I would like to 
thank the session chairs for managing the conference sessions.  
 
Anter El-Azab 
Conference Chair 
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Multiscale Methods for Fluid and Plasma Dynamics 
 
 

Russel Caflisch 
 
 

Department of Mathematics, University of California, Los Angeles, California 
(E-mail: caflisch@math.ucla.edu) 

 
 
 

ABSTRACT 
 
 
For small Knudsen number, simulation of rarefied gas dynamics (RGD) by particle methods 
(such as Direct Simulation Monte Carlo or DSMC) becomes computationally intractable 
because of the large collision rate. To overcome this problem we have developed a hybrid 
simulation method, combining DSMC and a fluid dynamic description. The molecular 
distribution function f  is represented as a linear combination of a Maxwellian distribution 

 and a particle distribution g ; i.e., gbbMf )1( . The density, velocity and 
temperature of  are governed by fluid-like equations, while the particle distribution g  is 
simulated by DSMC. In addition there are interaction terms between M and g . The 
coefficient b  is independent of velocity and represents the degree of thermalization. This 
method has been extended to simulation of Coulomb collisions in a plasma. Since the rate of 
Coulomb collisions is strongly dependent on velocity, the projection onto thermal component 
M  and kinetic component g  must be velocity dependent, for which we use thermalization 
and dethermalization probabilities that are functions of velocity. Numerical examples for both 
RGD and plasmas will be presented to illustrate the performance of the methods. 
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Kinetic Models for Dilute Polymers: Analysis, Approximation and 
Computation 

 
 

                             John W. Barrett1, David Knezevic2, and  Endre Süli2 
 

1Department of Mathematics, Imperial College London, London SW7 2AZ, UK.  
(E-mail: j.barrett@imperial.ac.uk) 

2Numerical Analysis Group, Oxford University Computing Laboratory, Wolfson 
Building, Parks Road, Oxford OX1 3QD, UK.  

(E-mail: endre.suli@comlab.ox.ac.uk) 
 
 

ABSTRACT 
 
 
We review recent analytical [1,2,3] and computational results [4,5,6] for macroscopic-
microscopic bead-spring models that arise from the kinetic theory of dilute solutions of 
incompressible polymeric fluids with noninteracting polymer chains, involving the coupling 
of the unsteady Navier-Stokes system in a bounded domain, in d=2 or 3 three space 
dimensions, with an elastic extra-stress tensor as right-hand side in the momentum equation, 
and a (possibly degenerate) Fokker-Planck equation over the (2d+1)-dimensional region that 
is the cartesian product of the flow domain, the configuration space domain D and the time 
interval [0,T]. We consider the question of  existence of global-in-time weak solutions to the 
model for a general class of spring potentials, including, in particular, the widely used finitely 
extensible nonlinear elastic (FENE) potential. The numerical approximation of this high-
dimensional coupled system is a formidable computational challenge, complicated by the fact 
that for practically relevant spring potentials, such as the FENE potential, the drift term in the 
Fokker-Planck equation is unbounded on the boundary of D. We shall present numerical 
simulations for this coupled high-dimensional micro-macro model. 
 

 Solutions for Some 

Sciences, 6, 939, 2005. 

odelling and Simulation, 6, 506, 
2007. 

Dilute Polymers with Microscopic Cut-
in Applied Sciences, 18, 935-971, 2008. 

[4] J.W. 

March 2008. http://web.comlab.ox.ac.uk/people/Endre.Suli/biblio.html 

with Microscopic Cut-  
ker-Planck Equations 

 
      http://web.comlab.ox.ac.uk/people/Endre.Suli/biblio.html 
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Coarse-graining of Macro-molecular Systems: Mathematical and 
Numerical Methods 

 
 

Petr Plechac 
 
 

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 
(E-mail: plechac@math.utk.edu) 

 
 
 

ABSTRACT 
 
 
We present mathematical tools developed for error control in microscopic simulations using 
the coarse-grained stochastic processes and reconstruction of microscopic scales. Derived a 
posteriori error control allows us to design adaptive coarse-graining of the configuration 
space. We shall briefly discuss how the methods of statistical mechanics (e.g., cluster 
expansions) lead to improved schemes with optimized interaction kernels. On specific 
examples of lattice as well as off-lattice dynamics (simulations of spin systems or polymers) 
we demonstrate that computational implementation of constructed hierarchical algorithms 
leads to significant speed up of simulations. Results from joint work with Markos 
Katsoulakis, Univ. of Massachusetts, Amherst and Vagelis Harmandaris, Max-Planck 
Institute for Polymers will be presented. 
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A Path-integral Formulation of DNA Looping Probabilities  
 
 

John H. Maddocks1, Rob Manning2, Ludovica Cotta-Ramusino3 
 
 

1 Faculté des Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, 
Switzerland (E-mail: john.maddocks@epfl.ch) 

2Mathematics Department, Haverford College, Haverford, PA, USA;  
(E-mail: rmanning@haverford.edu) 

3Institute for Mathematics and its Applications, University of Minnesota, Minnesota, 
USA (E-mail: cottaram@ima.umn.edu) 

 
 
 

ABSTRACT 
 
 
DNA looping is a biologically important phenomenon in which the probability of loop 
formation depends on the sequence of the fragment in question. I will show how such looping 
probabilities can be modelled using a semi-classical path integral formalism to evaluate 
approximations to the stationary probability density function for the location and orientation 
of one end of a continuum elastic rod, or polymer. The expression obtained involves the 
energy of a solution to the associated Euler-Lagrange equations arising from elasticity plus a 
fluctuation correction in terms of a volume of a basis of solutions to the associated Jacobi 
equations. 
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Mean Field Approximation of Transfer Operators in High-dimensional 
Conformation Dynamics  

 
 

Gero Friesecke1, Oliver Junge2 
 

Center of Mathematics, TU Munich, Germany 
1gf@ma.tum.de; 2junge@ma.tum.de 

 
 

ABSTRACT 
 
 
Conformation transitions reflect the global spatial/temporal behaviour of the system, and in 
particular occur at much slower timescales compared to the elementary frequencies of the 
system, and are therefore difficult territory for trajectory based methods. Since the 1990s an 
alternative approach based on transfer operators acting on densities on phase space has been 
developed, notably by Deuflhard, Schuette and coworkers. In the latter approach, the number 
of computational degrees of freedom of a direct discretization scales exponentially in the 
number of atoms. To overcome this problem we have developed a mean field method for 
computing transfer operators, whose relationship to the exact transfer operator is reminiscent 
of that of Hartree-Fock theory to the many-particle Schroedinger equation in quantum 
chemistry. Applications to biomolecules will be presented. 
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Some Recent Progress in Elliptic Homogenization  
 
 
 

Xavier Blanc1,3, Claude Le Bris2,3, Pierre-Louis Lions4,5 

 
 

1Laboratoire J.-L. Lions, Université Pierre et Marie Curie, Boite courrier 187, 75252 
Paris Cedex 05, France (E-mail: blanc@ann.jussieu.fr) 

2CERMICS, Ecole Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 
Marne-la-Vallée Cedex 2, France (E-mail: lebris@cermics.enpc.fr) 

3INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, BP 105, 78153 
Le Chesnay Cedex, France 

4Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France 
5CEREMADE, Université Paris Dauphine, place du Maréchal de Lattre de Tassigny, 
75775 Paris Cedex 16, France (E-mail: lions@ceremade.dauphine.fr) 

 
 

ABSTRACT 
 
We will present a series of recent works related to elliptic homogenization: on the theoretical 
front, some  variants of  stochastic homogenization([1,2]), and on the numerical front,  some 
approaches for improving the accuracy of corrector computations ([3], based on ideas 
previously developed in another context in [4,5]). 
 
[1] X. Blanc, C. Le Bris, P-L.  Lions, Stochastic homogenization and random lattices, Journal 

de Mathématiques Pures et Appliquées,  88,  pp 34-63, 2007  
[2] X. Blanc, C. Le Bris, P-L.  Lions, Une variante de la théorie de l'homogénéisation 

stochastique des opérateurs elliptiques,  Note aux Comptes Rendus de l'Académie des 
Sciences, t.~343, Série 1, p 711-724, 2006.    

[3] X. Blanc, C. Le Bris,  in preparation. 
[4] E. Cancès, F. Castella, Ph. Chartier, E. Faou, C. Le Bris, F. Legoll, G. Turinici, High-order 

averaging schemes with error bounds for thermodynamical properties calculations by MD 
simulations,  J. Chemical Physics, Volume 121, Number 21, 2004, pp~10346-10355  

[5] E. Cancès, F. Castella, Ph. Chartier, E. Faou, C. Le Bris, F. Legoll, G. Turinici, Long-time 
averaging for integrable hamiltonian dynamics, Numerische Mathematik, vol.135, Iss.2, 
2005, pp211-232   
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Micro-macro FENE Models for Polymeric Materials and their Closure 

Approximations 
 
 

Qiang Du  
 

Dept of Mathematics and Materials Science and Engineering, 
Penn State University, University Park, PA 16802 

(E-mail: qdu@math.psu.edu) 
http://www.math.psu.edu/qdu 

 
 
 

ABSTRACT 
 
 
We present some systematic moment closure methods for the multiscale micro-macro FENE 
models of polymeric materials, and demonstrate the good agreement of the new closure 
models with the fully coupled model in various cases that include the simple shear and 
extensional flows. This talk is based on the joint works with P. Yu (currently Goldman 
Sachs), C. Liu and Y. Hyon of Penn State University and J. Carrillo of Barcelona. 
 
[1] Q. Du, C. Liu and P. Yu,, FENE Dumbbell Model and Its Several Linear and Nonlinear 

SIAM Multiscale Modelling and Simulations, 4, pp. 709-731, 
(2005)  
 [2] Q. Du, C. Liu and P. Yu, From Micro to Macro Dynamics via a New Closure 

 SIAM Multiscale Modelling and 
Simulations, 3, pp. 895-917, (2005). 
 
[3
Micro- SIAM Multiscale Modelling and 
Simulations, in press, (2008) 
[4] Y. Hyon, J. Carrillo, Q. Du and C. Liu, A Maximum Entropy Principle Based Closure 
Method for Macro-Micro Models of Polymeric Materials, Kinetic and Re lated Models, 1,  
pp.171-184, (2008)  
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Homogenization with Nonseparated Scales 
 
 

Leonid Berlyand  
 
 

Department of Mathematics, Pennsylvania State University, University Park, PA, USA  
(E-mail : berlyand@math.psu.edu) 

 
 
 

ABSTRACT 
 
 
This is a joint work with H. Owhadi (Caltech). We discuss a novel mathematical approach 
that allows to construct discrete finite dimensional approximations with a controlled error 
estimate in continuum PDE models with non-separated scales. This approach is based on 
approximation of gradients of 2H  functions in 2L  norm by a linear combination of 
M divergence free vector fields from nL2  with coefficients that are piecewise linear on a 
partition of the domain nR  of a given resolution with an error of the order h . Here M  
is any integer greater than n . We apply this approach to upscaling of elasticity problems and, 
in particular, derive a generalized Cauchy-Born rule for non-monoatomic solids.  
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Toward Multiscale Modelling and Simulation of Fuel Cells 
 
 

Ismaila Dabo1,2, Eric Cancès1,2, Yanli Li1 and Nicola Marzari2  
 
 

1 Cermics, Ecole des Ponts, Université Paris Est, and INRIA Rocquencourt, Micmac 
Project, 6 & 8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée, France,   

2Department of  Materials Science and Engineering, Massachusetts Institute of 
Technology, Cambridge, MA, USA.   

 
 

ABSTRACT 
 
 
Understanding the electrical response of electrochemical convertors, such as fuel cells or 
batteries, involves elucidating the effect of the macroscopic voltage on the microscopic 
charge distribution at the electrode-electrolyte interface. 
 
I will present a quantum/classical model which couples a quantum molecular description of 
the electrode-electrolyte interface with a polarizable-continuum representation of the long-
range effects of the ionic solvent. I will mainly focus on the mathematical and numerical 
aspects. In the last part of my talk, I will present some numerical simulations which 
demonstrate the efficiency of this approach.   
  
The authors acknowledge support from the MURI grant DAAD 19-03-1-0169, from the 
INRIA postdoctoral fellowship, and from the ANR CIS Sire grant.  
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Sub-linear Scaling Algorithms for the Study of the Electronic Structure of 
Materials 

 
 

Carlos J. Garcia-Cervera1, Jianfeng Lu2, and Weinan E3 

 
 

1 Mathematics Department, University of California, Santa Barbara, CA 93106,  
(E-mail: cgarcia@math.ucsb.edu) 

2 Program in Applied and Computational Mathematics, Princeton University, Fine Hall, 
Washington Road, NJ 08544 (E-mail: jianfeng@math.princeton.edu) 

 3 Mathematics Department and Program in Applied and Computational Mathematics, 
Princeton University, Fine Hall, Washington Road, NJ 08544,  

(E-mail: weinan@princeton.edu) 
 
 

ABSTRACT 
 
 
We discuss a class of sub-linear scaling algorithms for the study of the electronic structure of 
materials, based on a real-space formulation of the Kohn-Sham density functional theory in 
terms of  non-orthogonal, localized orbitals. We divide these localized orbitals into two sets: 
One set associated with the atoms in the region where the deformation of the material is 
smooth (smooth region), and other set associated with the atoms around the defects (non-
smooth region). The orbitals associated with atoms in the smooth region can be approximated 
accurately using asymptotic analysis. The results from the smooth region can then be used  to 
find the orbitals in the non-smooth region.  
 
[1] C.J. Garcia- sub-linear scaling algorithm for computing the 

5, 999 
(2007). 
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Abstract

We propose a general coupling method in the context of additivity models, see
references in [1], and of general fragmentation schemes such as [2, 3] for the efficient
numerical treatment of the electronic structure problem of molecular systems. We
discuss the new method which results in linear scaling complexity and demonstrate
its qualities for a wide range of organic molecules.

1 Method

The coupling of the micro- and the mesoscale of molecular systems and their chemical re-
actions is currently a field of intensive research. Here, the ultimate goal would be a seam-
less coupling of quantum mechanical computations where needed and classical molecular
mechanics simulations where sufficient. To this end, we consider the time-independent
electronic Schrödinger equation in the Born-Oppenheimer approximation,

H(R(t))
e (r)φ

(R(t))
(0) (r) = E0(R(t))φ

(R(t))
(0) (r), (1)

where R(t) represents the time-dependent 3M nuclei coordinates, r the 3N electronic
degrees of freedom and φ0 designates the electronic ground state wave function with
energy E0 of the Hamiltonian He. We then define a total ground state energy function
E(M) : (N× R

3)M → R.

E(M)(R̃I) := min˛
˛
˛
˛φ

( eRI )

(0)

˛
˛
˛
˛=1

∫
φ
( eRI)

∗
(0) (r)Heφ

( eRI)
(0) (r)dr, (2)
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where φ(0) denotes the ground state electronic wave function, R̃i := (Zi, Ri(t)) denotes
the set of variables {R̃i}i∈U with the index set I = {1, . . . ,M} of the nuclei andRi(t) and
Zi denotes the nuclei coordinates and the atomic number of each nuclei, respectively.

Now, we decompose the energy function E(M) analogously to the ANOVA approach,
for further details of the ANOVA decomposition see [4] and the references given therein.
To this end, we expand the 3M -dimensional function E(M) in a multivariate telescopic
sum, involving a splitting into contributions which depend on the positions of single nuclei
and associated charges, of pairs of nuclei and associated charges, of triples of nuclei and
charges, and so on, i. e.,

E(M)(R̃1, . . . , R̃M) :=
∑
U⊆I

FU(R̃U)

= F0 +
M∑
i1

Fi1(R̃i1) +
M∑

i1<i2

Fi1,i2(R̃i1 , R̃i2) + . . .+ Fi1,...,iM (R̃i1 , . . . , R̃iM ). (3)

Here, each term Fi1,...,ik is defined as follows:

Fi1(R̃i1) = Ei1(R̃i1)− F0,
Fi1,i2(R̃i1 , R̃i2) = Ei1,i2(R̃i1 , R̃i2)− Fi1(R̃i1)− Fi2(R̃i2)− F0,

. . . . . . , (4)

where the constant function F0 is set equal to zero since it corresponds to the energy of an
empty molecular system. The total electronic ground state energy EU(R̃U) of a molecular
subsystem, described by a set of indices U ⊆ I , is then defined in an analogous way to (2).

The energy functions Fi1,...,ik may be considered as many-body interaction contribu-
tions, as in [5]. This leads us to the following assumption: There is a certain decay with
the order |U | = k of the contributions in the ANOVA expansion. This is also strongly
supported by the success of conventional two-, three-, four- and many-body potential func-
tions used in classical molecular mechanics. Hence, we truncate the series expansion (3)
at a defined order k by setting

E(M)(R̃1, . . . , R̃M) ≈
∑
U⊆I

γUFU(R̃U) with γU =

{
0 |U | > k,
1 |U | ≤ k. (5)

Furthermore, we interpret a molecular system withM nuclei as a hydrogen-suppressed
graph GI = (VI , EI) with vertex set VI = {vi}i∈I and edge set EI = {eij}i,j∈I of all
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bonds, where each edge of EI corresponds to a bond between vertices vi, vj ∈ VI in the
system. Furthermore, we define the distance matrix, see [6],

Dij =

{
min (l(pij)) ∃eij ∈ EI ,

+∞ eij 	∈ EI ,
(6)

where min (l(pij)) is the shortest path for all vertices vi, vj ∈ VI . Now, consider for
example the term Fi1,i2(R̃i1 , R̃i2) in (5), which represents a two-body interaction. If we
disassociate the two atoms R̃i1 ,R̃i2 , i. e. if we take the limit |R̃i1 − R̃i2| → ∞, the energy
term will be just the sum of the single particle energies: Ei1,i2(R̃i1 , R̃i2) → Ei1(R̃i1) +

Ei2(R̃i2). Hence, lim| eRi1
− eRi2

|→∞ Fi1,i2(R̃i1 , R̃i2)) = 0. Analogous observations hold for
higher order terms. Consequently, we also drop terms in (5) by further setting

γU =

{
0 max {Dij|∀i, j ∈ U with i 	= j} > k,
1 else,

(7)

for details see [7]. Then, according to their non-zero values γU we identify the resulting
fragments U . Note that for all FU with γU 	= 0 according to (4) we only need to know
terms EU and FU ′ with U ′ ⊆ U and γU ′ 	= 0. We solve each eigenvalue problem of the
related local Hamiltonian of the Schrödinger equation by an approximate solver such as
Hartree-Fock or DFT that yields the energies EU . Finally, we compute first all necessary
terms FU by the recursion relation (4) and then we form the truncated sum in (5), which
gives a good approximation of E(M).

This scheme, coined Bond Order diSSection ANOVA, results in a linear scaling com-
plexity. Accordingly, the overall evaluation cost of the eigenvalue problems, as the number
of involved terms in the series expansion, depends only linearly on the number of nuclei
M . Thus, this scheme is attractive for huge systems up to thousands and ten thousands
atoms: It is trivial to parallelize and scales directly with the number of processors. Fur-
thermore, it requires only very moderate resources per local electronic problem and is thus
ideal for cluster computing.

This also has an important impact on QM/MM molecular dynamics simulations and
specifically on multi-scale coupling schemes, where for thousands of small time steps a
huge number of fragments will have to be calculated. There, a passive environment is
modelled via empirical potentials and only the active region - called the reaction site - is
treated quantum mechanically.
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Figure 1: Magnitude of summed contributions
∑M
|U |=k FU for each truncation order k in

Hartree and relative computation time per order k.

2 Numerical Results

We applied the method to a wide range of organic molecules, the specifics are given in
table 1, where we have sorted the molecular configurations first by the number of rings
and second by the number of atoms in ascending order. In the implementation of our
BOSSANOVA method, we employed for each of the fragments EU standard closed shell
Hartree-Fock calculations and the STO-3G basis set. We used the "Massively Parallel
Quantum Chemistry" program [8].

In fig. 1.1 we give the summed contributions
∑M
|U |=k FU of each order k in Hartree,

in fig. 1.2 the computation time up to the specific order k in relation to the time for a
calculation of the total system. We clearly see a fast decay of the summed contributions
with rising order k. This indicates good convergence. Correspondingly, a relative com-
putation time less than 1 indicates faster overall computation. Noticeably, our scheme
performs very well and outruns full calculations on molecules, whose graphs have a tree-
like structure, up to order k = 3 already for small systems M < 10. Molecules with
many interconnected rings, as found for higher index numbers in fig. 1.1 and 1.2, have to
be treated with values of k larger than the size of the rings, as these still give a significant
many-body contribution.

Funding was granted under the priority program SPP1165 of the Deutsche Forschungs-
gemeinschaft (DFG).
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Table 1: Suite of test molecules and their indices.
INDEX MOLECULE INDEX MOLECULE INDEX MOLECULE

1 oxalic acid 12 glucose 23 acetanilide
2 acrylamide 13 proline 24 2-methylcyclohexanone
3 (N,N)-dimethylacetamide 14 (1,3,5)-triazine 25 aspirin
4 (1,2)-dimethoxyethane 15 (1,4)-dichlorobenzene 26 cycloheptane
5 tartaric acid 16 benzonitrile 27 adenine
6 asparagine 17 melamine 28 biphenylene
7 dimethyl bromomalonate 18 gallic acid 29 benzophenone
8 putrescine 19 (1,2)-dimethylbenzene 30 benzidine
9 neohexane 20 mandelic acid 31 indigo
10 isoleucine 21 m-methylanisole 32 cholesterol
11 heptan 22 2-phenylpropene 33 buckyball
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ABSTRACT 
 
In this talk, we describe a general approach for estimating and controlling modeling error, 
defined here as the difference between values of quantities of interest theoretically attainable by 
a fine-scale base model and those values supplied by a sequence of coarser-scale surrogate 
models.  This approach provides the basis for goal-oriented error estimation and adaptation for 
multi-scale problems [1,2,3,4] and we give examples of modeling error estimation and adaptive 
modeling in which the sequences of surrogate models are obtained using atomic-to-continuum 
coupling methods. To demonstrate the effectiveness of this framework, we consider a class of 
applications in molecular statics of large polymer structures encountered in manufacturing nano-
scale semiconductor devices [5].  We also describe more recent work on extending these 
concepts to stochastic systems and present new Bayesian-based approaches to calibration, 
validation, and uncertainty quantification for multiscale modeling.  
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ABSTRACT 

The problem of developing continuum models of dislocation dynamics in metallic crystals is 
addressed in this work. This multiscale problem is important in developing a physical theory of 
crystal plasticity from first principles: the statistics, dynamics and interactions of dislocations. A 
formalism of the problem is developed here by adopting the concepts of classical kinetic theory. 
In particular, we derive a hierarchical set of kinetic equations governing the space-time evolution 
of the dislocation density in the crystal, which is similar to Klimontovich’s development of the 
kinetic theory of plasma [1]. We further analyze the coupling of the dislocation density evolution 
with the long-range dislocation interactions and with the changes in the crystal geometry induced 
by plastic distortion. A proposal for a crystal plasticity theory based on this statistical mechanical 
framework will be given and compared with existing empirically-based theories. 

[1] Yu. L. Klimontovich, The Statistical Theory of Non-Equilibrium Processes in a Plasma, MIT 
Press, Cambridge, MA, 1967. 

The work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, 
Division of Materials Science and Engineering under contract number DE-FG02-08ER46494 at 
Florida State University. 
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ABSTRACT 
 
Electronic structure calculations (derived from first-principle, quantum-mechanical calculations), 
especially those using density-functional theory have provided many insights into various 
materials properties in the recent decade. However, the computational complexity associated 
with electronic structure calculations has restricted these investigations to periodic geometries 
with cell-sizes consisting of few atoms (200 atoms). But, material properties are influenced by 
defects in small concentrations (parts per million). A complete description of such defects must 
include both the electronic structure of the core at the fine (sub-nanometer) scale and also elastic 
and electrostatic interactions at the coarse (micrometer and beyond) scale. This in turn requires 
electronic structure calculations at macroscopic scales, involving millions of atoms, well beyond 
the current capability. 
 
This talk presents the development of a seamless multi-scale scheme, quasi-continuum orbital-
free density-functional theory (QC-OFDFT) to perform electronic structure calculations at 
macroscopic scales. This multi-scale scheme has enabled for the first time a calculation of the 
electronic structure of multi-million atom systems using orbital-free density-functional theory, 
thus, paving the way to an accurate electronic structure study of defects in materials. The key 
ideas in the development of QC-OFDFT are (i) a real-space variational formulation of orbital-
free density-functional-theory, (ii) a nested finite-element discretization of the formulation, and 
(iii) a systematic means of adaptive coarse-graining retaining full resolution where necessary, 
and coarsening elsewhere with no patches, assumptions or structure. Rigorous proofs of 
convergence of the finite-element approximation using the variational notion of Gamma-
convergence will be presented. The accuracy of QC-OFDFT scheme and the physical insights it 
offers into the behavior of defects in materials are highlighted by the study of vacancies in 
aluminum. 
 
 
This work is done in joint collaboration with Prof. Michael Ortiz (Caltech), Prof. Kaushik 
Bhattacharya (Caltech), and Dr. Jaroslaw Knap (ARL). 
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ABSTRACT 

The classical approach [1] in molecular dynamics is to apply Newton's laws to each nucleus 
submitted to forces deriving from potentials themselves built and fitted from computational 
quantum mechanics. Obviously the displacement of the nuclei modifies the potential but this 
effect is not always taken into account or only through an outer loop. But in several cases the 
inter-nuclei coupling is not local because the electronic density may be distributed far away and 
full coupling has to be considered. 

We propose here to follow two ideas to circumvent these shortcomings. The first one is to apply 
the Erhenfest dynamics [2] for the transition from quantum to molecular dynamics because it is 
more basically linked to the probability signification of the wave function and incorporates its 
spatial distribution. For instance for a 2-body problem it provides a relation of the following 
qualitative type: 

 21 ( , )n n n e
n

x V x x
m

 

which shows that the Newton law is actually a weighted wave average of the potential gradient 
V  by the wave function (xn,xe) which depends both on electron and atomic positions. 

 
The second idea is to revisit the discoupling between quantum and molecular dynamics [3]. 
Actually because of the Born approximation the nucleii are assumed to be fixed during the ab 
initio computations although the position of the atoms has to be iteratively modified in order to 
arrive at a true ground state energy. The algorithm that we propose here is to reach directly this 
state by an explicit coupling between quantum and molecular computations as is often used e.g. 
in dynamic relaxation approaches in nonlinear structural dynamics. 
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ABSTRACT 
 
In this work, we develop a coupling method to perform multi-scale Monte-Carlo simulations of 
material structures described at the atomic scale and subjected to random phenomena. The new 
method results in a dramatic reduction of the number of degrees of freedom that would be 
required if one wanted to perform Monte-Carlo simulations of the fully atomic structure. The 
focus here is on the construction of an equivalent stochastic continuum model and on the 
coupling of this model with a discrete particle model through a stochastic version of the Arlequin 
Method [1,2]. Concepts from the Stochastic Finite Element Method, such as the Karhunen-Loeve 
expansion and Polynomial Chaos, as well as Stochastic Collocation, are extended here to multi-
scale problems so that Monte-Carlo simulations are performed only with respect to the sub-
regions of interest. Preliminary results are given for 1D and 2D structures with harmonic 
interaction potentials [3,4].  
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n the Application 
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Mechanics, 42, 511 (2008). 
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ABSTRACT 
 
The development of predictive and efficient atomistic-to-continuum computational methods 
requires both an analysis of the error and efficiency of its many components (coupling error, 
model and mesh adaptivity, solution methods) as well as its integration into an efficient method 
capable of solving problems of technological interest. Mathematical challenges are presented by 
the complex energy landscape of materials with defects and microstructure, where the classical 
numerical analysis techniques developed for convex energy landscapes and elliptic partial 
differential equations is inadequate. 
 
For crystalline materials, there are typically a few small regions with highly non-uniform 
structure caused by defects in the material which are surrounded by large regions where the local 
environment of the atoms varies slowly. The idea of the Quasicontinuum Method is to achieve 
accuracy similar to a fully atomistic simulation while reducing the computational complexity in 
regions where the strain gradient is small. It does so by selecting representative atoms as nodes 
for piecewise linear interpolation and by further approximating the nonlocal atomistic energy by 
a local strain energy density.  Since the position of material defects is typically not known a 
priori, we have developed adaptive algorithms to determine where the accuracy of atomistic 
modeling is needed and how to coarsen the mesh in the continuum region. 
 
There are many choices available for the interaction among the representative atoms, especially 
between those in the atomistic and continuum regions, which has led to the development of a 
variety of quasicontinuum approximations. We will present criteria for determining a good 
choice of quasicontinuum approximation for a given problem that considers trade-offs between 
accuracy and algorithmic efficiency.  Our criteria are based on an analysis of the effect of the 
coupling error on the goal of the computation, on the integration of the quasicontinuum 
approximation with model and mesh adaptivity, and on the development of efficient iterative 
solution methods. 
 
See http://www.math.umn.edu/~luskin/cv/papers.html for references. 
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ABSTRACT 
 
In recent years there has been a multitude of new methods developed to couple an atomistic 
model to a continuum-based approximation (such as finite elements).  The goal of these methods 
is to be able to reproduce the results of a fully atomistic simulation at a reduced computational 
cost.  Naturally each of these methods has an inherent accuracy and efficiency, however it is 
difficult to compare these attributes between methods for two reasons.  First, it is necessary to 
spell out what is a suitably rigorous yet sufficiently simple and controllable test problem to study 
as a benchmark for these methods.  Second, it is necessary to implement all these methods within 
a unified overall framework.  This eliminates any differences between elements that are common 
across methods (such as, for instance, routines to compute atomic forces or solver algorithms), 
and thus permits a fair comparison.  

In this presentation, we make a case for what should be considered an appropriate 
benchmark problem; one that is sufficiently simple so as to be quick to simulate and 
straightforward to analyze, but not so simple as to unwittingly hide differences between methods.  
For example, models of 1D chains of atoms, or those using simple near-neighbor pair potentials 
are often not a sufficiently rigorous test.  At the same time, the problem should test the model 
outside a simple linear or even elliptical regime.  To this end, we have chosen to test all of the 
implemented methods on a problem involving the structure and motion of a dislocation dipole in 
fcc aluminum.  The problem is 2D (actually 3D with minimal periodicity in the third direction) 
and uses a reasonably complex description of atomic bonding (the Embedded Atom Method 
potentials of Ercolessi and Adams). 

Finally we have implemented 11 of the multiscale methods from the literature and 
compared their accuracy and efficiency on the dislocation dipole benchmark test.  This allows 
direct, quantitative comparison between the accuracy and efficiency of these methods. 
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ABSTRACT

We consider an optimization-based atomistic-to-continuum coupling strategy where the atomistic
and continuum displacements and stresses are constrained to agree over some overlap region where
both models hold. A simple 1D example illustrates the optimization scheme.

1. Introduction

Multiscale simulations leverage the accuracy of microscale simulations in regions where the physics
are rapidly changing while taking advantage of the efficiency of macroscale simulations in the re-
mainder of the domain. We are interested in the case where the computational domain Ω is divided
into three disjoint regions: Ωa, where the physics of the problem are governed only by first princi-
ples at the microscale; Ωc where a macroscale model holds; and Ωb which is some bridge region
acting as an interface between the two models.

In the literature, agreement between the two models is achieved mainly through constraining the
microscale dynamics based on macroscale information [1] or using Schwarz iteration to guarantee
consistency between the models [2]. However, this paper describes an optimization-based coupling
strategy which in [3, 4] was applied to two macroscale regions, each governed by a different partial
differential equation (PDE). The difference in this paper is that optimization over the bridge region
is used to couple a microscale atomistic model over Ω̄a∪ Ω̄b with a macrocale continuum model
over Ω̄b∪ Ω̄c.

2. Models

2.1 Atomistic

The division of Ω into the three subdomains is effected in the reference configuration, X. We let
Na be the set of indices of particles located in Ω̄a/

(
Ω̄a∩ Ω̄b

)
, and Nb be the set of particle indices

located in Ω̄b. The reference position of particle α is denoted by Xα, while its deformed position
is given by xα. Thus uα = xα−Xα is the displacement of the α particle.

The force on particle α is assumed local and due only to particles within the ball Bα = {x ∈ Ω :
|x− xα| ≤ η} for some given η ≥ 0. Let Nα = {β|xβ ∈ Bα,β �= α}, i.e. Nα is the set of indices

Mathematical issues in multiscale materials modeling

53



corresponding to the particles in Bα, other than the α particle itself. Then, the force on the atomistic
particle α due to all the other particles is given by

∑
β∈Nα

fα,β = 0 for α ∈Na∪Nb, (1)

where fα,β denotes the force acting on particle α due to particle β.

We do not apply the atomistic model to particles in Ωc; however, some particles in Ω̄a∪Ω̄b depend
upon force contributions from particles in Ωc. When the atomistic displacement of a particle in Ωc
is required, we assume it is equivalent to the continuum displacement, u(X).

2.2 Continuum Model

The Cauchy stress tensor, σ(X), is used to determine the force over the continuum region. At any
point X in the continuum region, we have the force balance

∇ ·σ+bc = 0 for X ∈ Ω̄c∪ Ω̄b (2)

where bc is an externally applied volumetric force. In §4., we assume bc = 0.

3. Optimization Scheme

Over Ωb both models hold, so the atomistic and continuum displacements and stresses should
agree in the bridge region. The displacement constraint is expressed as

uα = u(Xα) for all α ∈Nb. (3)

The stress constraint,
σα

a = σ(Xα) for all α ∈Nb (4)

requires an averaged “atomistic stress”, σα
a , based on the computed atomistic displacements. This

expression is given by

σι
a =

1
2|Δι|

∑
j �=i

di j
(
xi−x j

)
⊗ fi, j (5)

where the summation runs over all pairs of particles in the domain Ω, and the averaging is per-
formed over the representative volume element, Δι [5]. The weighting function, di j, is determined
by the fraction of |xi−x j| that overlaps Δι.

We separately solve the atomistic model in Ωa and the continuum model in Ωc by specifying the
displacements for the two models along Ωb in such a way that

u(X) = U(X) for X ∈Ωb and uα = U(Xα) for Xα ∈Ωb (6)
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for some guess displacement U(·). Arbitrary choices for U(·) will not satisfy (4), so the optimal
U(·) is found by solving the optimization problem

min
U
‖σα

a −σ(Xα)‖, (7)

where σα
a and σ(X) are determined from solving Eqns. (1) and (2) separately using the boundary

conditions in Eqn. (6).

4. Numerical Example

Region Ω = (0,1) is divided into Ωa, Ωb, and Ωc. Fig. 1 shows the scenario of interested in this
section: Ωa = (0,0.6), Ωb = (0.3,0.6), and Ωc = (0.3,1). The atomistic grid spacing is s= 0.005
while the continuum grid spacing is h= 0.1. The Δι used here is 0.05.

To test the algorithm described in §3., we consider the nearest-neighbor atomistic force model

fα,β = 100 ∑
β=α±1

(uα−uβ

s

)
, (8)

and a continuum stress model given by

σ(u) = 100
du
dx

. (9)

The exact displacement solution is linear from u(0) = 0 to u(1) = 0.01, which leads to a constant
exact stress solution of one over the whole domain. The initial guess for the displacement is exactly
zero, and Matlab’s fmincon function is used to find the optimal solution with objective function
and constraint tolerances of 10−6.

The optimal linear displacement and stress are shown in Fig. 1. One can see that the displacement
is well-approximated, and the atomistic and continuum stresses agree with the exact solution up
to the 4th decimal place. The optimizer reached this solution after six iterations and 868 function
calls. The objective function was reduced to 6.6441× 10−11, and the maximum constraint value
was 7.903×10−8.

5. Summary

We have illustrated a method for coupling atomistic and continuum simulations using optimization.
While the numerical example showed only a simple one-dimension problem with nearest-neighbor
atomistic interactions, this procedure can be extended to more complicated coupling problems.

Mathematical issues in multiscale materials modeling

55



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

Reference Grid

Atomistic
Continuum
Truth

0 0.2 0.4 0.6 0.8 1

0.99996

0.99998

1.0

1.00002

1.00004

Reference Grid

Atomistic
Continuum
Comparison Points
Truth

Figure 1: Nearest neighbor interactions, overlap at [0.3,0.6]: displacement (left) and stress (right)

Acknowledgements

This work was supported by the Office of Science of the U.S. Department of Energy under grant
number DE-FG02-05ER25698.

References

[1] X. B. Nie, S. Y. Chen, W. N. E, and M. O. Robbins, “A Continuum and Molecular Dynam-
ics Hybrid Method for Micro- and Nano-fluid Flow”, Journal of Fluid Mechanics, 500, 55
(2004).

[2] E. M. Kotsalis, J. H. Walther, and P. Koumoutsakos, “Control of Density Fluctuations in
Atomistic-Continuum Simulations of Dense Liquids”, Physical Review E, 76, 1 (2007).

[3] M. D. Gunzburger, J. S. Peterson, and H. Kwon,“An Optimization Based Domain Decom-
position Method of Partial Differential Equations”, Computers and Mathematics with Appli-
cations, 37, 77 (1999).

[4] Q. Du and M. D. Gunzburger, “A Gradient Method Approach to Optimization-based Mul-
tidisciplinary Simulations and Nonoverlapping Domain Decomposition Algorithms”, SIAM
Journal on Numerical Analysis, 37, 1513 (2000).

[5] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden, “Heterogeneous multiscale meth-
ods: A review”, Communications in Computational Physics, 2, 367 (2007).

Mathematical issues in multiscale materials modeling

56



Approximating the quasicontinuum method using

quadrature rules

Yanzhi Zhang∗, Max Gunzburger

Department of Scientific Computing, Florida State University,

Tallahassee, FL 32306-4120, USA.

ABSTRACT

A quadrature-rule type approximation to the quasicontinuum method is described. Its computa-
tional complexity depends on the number of representative particles but not on the total number
of particles. Simple numerical examples are provided to illustrate the accuracy and efficiency of
this method.

1 Introduction

Consider a crystal with N particles and let N = {1, . . . , N} denote the index set of all particles.
The positions of the particle α in the reference and a deformed configuration are defined by
Xα and xα, respectively. In practice, the positions of some particles may be specified, and let
Nf ∈ N denote the index set of these particles. Then denote Na = N\Nf the index set of the
remaining unspecified particles. The total potential energy is given by

Φ({xα}α∈N ) =
∑
α∈N

∑
β∈N , β>α

Φa(xα,xβ) +
∑
α∈N

Φe(xα), (1)

where Φa(xα,xβ) denotes the interacting potential between particle α and β, and Φ
e(xα) is the

potential due to the external force acting on particle α, which is assumed to be conservative. To
determine the stable equilibrium configurations of the crystal, we can minimize the energy (1)
with respect to all unspecified particles, equivalently, by solving the problem1

∂Φ

∂xα

({xα}α∈N ) = 0 for α ∈ Na. (2)

In general, our aim is not simply to determine the absolute minimizer of Φ({xα}α∈N ), but rather
the set of metastable configurations of the crystal, which is physically more relevant.
We see that, (2) is a system of2 dNa equations in the dNa unknowns with Na of the same

order as N . Usually, the number N is huge, which makes it is almost impossible to directly
simulate this whole system. The quasicontinuum (QC) method using representative particles is
one of the most successful multiscale techniques to simplify large atomic systems [1,2]. However,
it still involves calculations over the full atomic lattices so that its complexity depends on the
total number of particles [3]. The aim of this paper is to present a quadrature-rule (QC-QR) type
approximation to the QC method. It is organized as follows. In Section 2, we review the QC
method for molecular statics. Section 3 shows the details of the QC-QR method and numerical
experiments. A brief summary is provided in Section 4.

∗Email: yzhang@scs.fsu.edu.
1The notation ∂Φ/∂y denotes the d-vector ∇yΦ having components ∂Φ/∂yk, k = 1, . . . , d.
2d is the spatial dimension, and Na denotes the cardinality of the index set Na.
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2 Quasicontinuum method

To apply the quasicontinuum (QC) method, we start by selecting a reduced set of representative

particles, and details about it are given in, e.g., [3]. Let Ñr ⊂ N denote the index set of
the representative particles. Typically, we choose all the specified particles to be among the
representative particles, i.e., Nf ⊂ Ñr, and then let Nr = Ñr\Nf . Denote Th = {Δt}

T
t=1 a

triangulation in the reference configuration which consists of simplices having the representative
particles as vertices. Let Th,j =

{
Δt |Xj ∈ Δt

}
be the set of simplices which have Xj as a

vertex. Denote {ψj(X)}j∈ eNr
a basis for the space of continuous, piecewise linear polynomials

corresponding to the triangulation Th. In particular, we choose the basis so that

ψh
j (Xi) = δij , if i, j ∈ Ñr and ψh

j (X) = 0, if X /∈ Th,j.

By the Cauchy-Born rule, we assume that

xh
α =

∑
k∈ eNr

xh
kψ

h
k (Xα) ≈ xα for α ∈ Na, (3)

where xh
k is the (approximate) position of the representative particle k ∈ Ñr. Denoting Nj ={

α ∈ Na | Xα ∈ supp
(
ψh
j (X)

)}
, then we have that (2) reduces to∑

α∈Nj

ψh
j (Xα)

( ∑
β∈N , β �=α

fa(xh
α,x

h
β)

)
+

∑
α∈Nj

ψh
j (Xα)f

e(xh
α) = 0, j ∈ Nr (4)

where fa(xα,xβ) = −∂Φ
a(xα,xβ)/∂xα denotes the force acting on particle α due to particle β,

and fe(xα) = −∂Φ
e(xα)/∂xα is the external force.

It is easy to see that the system (4) includes dNr equations and the same number of degrees
of freedom, but the work involved in determining its solution depends on N , the total number of
particles. Furthermore, the QC method can not essentially reduce the complexity in computing
the total energy (1), which still requires a work of O(N2).

3 Quadrature-rule type approximations

To mitigate the dependence of the total number of particles in the QC method, we have to
approximate all sums appearing in the force balance equations (4) and in the energy (1), i.e., the
sums having the form

G =
∑
α∈N

g(Xα), Gj =
∑
α∈Nj

g(Xα), and Sα =
∑
β∈N

s(Xα,Xβ), (5)

where g(·) and s(·, ·) are appropriate functions. These sums may be broken into the sums over all

representative particles Xj, j ∈ Ñr, and over all simplices Δt, t = 1, . . . , T , in the triangulation
Th. To this end, we denote Nt = {α ∈ Na | Xα ∈ Δt} as the index set of the particles located
inside of the simplex Δt. Let Tj = {t ∈ {1, . . . , T} | Δt ∈ Th,j} denote the index set of the
simplices in the support regions of the basis function ψh

j (·). Then we get

∑
α∈N

=

T∑
t=1

∑
α∈Nt

+
∑
k∈ eNr

, and
∑
α∈Nj

=
∑
t∈Tj

∑
α∈Nt

+
∑
α=j

. (6)
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We now focus on the inner sums over individual simplices. Choose the subset

Nt,q =

{
Nt if Nt ≤ q
a q-dimensional subset of Nt otherwise,

(7)

i.e., Nt,q consists of at most q particles chosen from among the particles in the simplex Δt. Then
the inner sums in (6) can be approximated by∑

α∈Nt

g(Xα) ≈
∑

β∈Nt,q

ωt,β g(Xβ). (8)

Combining (6) and (8), we can easily get the approximations to the sums G and Gj. Since the
function s(·, ·) in Sα depends on the relative positions of two particles, we can not simply apply
(8) to the sums Sα, and we have the following two cases:
In a short-range interaction case, the particle only interacts with its nearby particles, so we

can assume that Φa(xα,xβ) = 0, when |xβ − xα| > r for some r > 0. Denote Nα,r = {β ∈
N | 0 < |xβ − xα| ≤ r} the index set of the particles interacting with the particle α. Then the
sums Sα can be reduced to

Sα =
∑
β∈N

s(Xα,Xβ) ≈
∑

β∈Nα,r

s(Xα,Xβ). (9)

While for the long-range case, the particle interacts with all particles, but the interaction
becomes weaker when the distance between two particles increases. Thus we can denote Tα,r =
{t ∈ {1, . . . , T} | d(Δt,Xα) < r} the index set of simplices whose distance to the particle α
is less than r units, where the distance between a simplex Δt and a particle Xα is defined by
d(Δt,Xα) = minβ∈Nt

|Xβ −Xα|. Then the sum Sα is approximated by

Sα ≈
∑
t∈Tα,r

∑
β∈Nt

s(Xα,Xβ) +
∑
t/∈Tα,r

∑
β∈Nt,q

ωt,β s(Xα,Xβ) +
∑
k∈ eNr

s(Xα,Xk). (10)

The selection of “quadrature” points Xβ and computation of ωt,β are done in the reference con-
figuration, and they can be used for all the steps of an iterative solution process.

To test the performance the quadrature-rule type method, we use a simple one-dimensional
particle chain with N = 4096 particles as our example. The potentials are chosen as

Φa(r) = 4ε0

[(σ
r

)12
− 2

(σ
r

)6]
+

1

4πε1

qαqβ
r

, φe(x) =
1

100XN

(
XN

2
− x

)2
, (11)

where r = |xα − xβ| and XN is the position of the right-most particle in the reference config-
uration. The parameters are chosen as ε0 = σ = 1, ε1 = 0.01 and qα = +1 for α ∈ N . In
the reference configuration, all particles are uniformly distributed with a distance h = 1. The
left-most and right-most particles are fixed, i.e., x1 = X1 and x4096 = X4096.
Fig. 1 shows the errors of the QC and QC-QR methods by comparing with the full atom-

istic method. From it, we see that the errors of both methods decrease when the number of
representative particles increases. On the other hand, the errors from the QC-QR method are
always larger than those from the QC method. This is because the error of the QC-QR method
includes: i) the reduction of the number of degrees of freedom from Na to Nr through the use of
the Cauchy-Born rules and the use of representative particles; ii) the use of quadrature-rule type
approximation to the sums in the QC method; iii) the ‘truncation’ of the interaction potential.
However, from the figure, we see that, for a given error level, the time used by the QC-QR
method is usually much shorter than that spent by the QC method.
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Figure 1: Average position error (up) and relative energy error (down) versus the number of
representative particles (left) and computational time (right).

4 Summary

We presented a quadrature-rule (QC-QR) type approximation to the quasicontinuum (QC)
method. This method essentially reduces the complexity of the QC method, and its compu-
tational cost depends on the number of representative particles. Numerical experiments showed
that the QC-QR method has enough accuracy but it is much faster than the QC method. Details
about the methods described in this paper may be found in [4,5]. In the future, a much greater
array of tests in two and three dimensions are needed to ultimately provide convincing evidence
about the efficacy of the QC-QR methods.
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ABSTRACT

We discuss a new method for coupling molecular dynamics and continuum mechanics,
which is based on a function space oriented approach. For this purpose, the micro scale
displacements originating from molecular dynamics in the Euclidean space are extended
into a Sobolev space using a partition of unity. Then, a scale decomposition is realized
in L2 by means of an orthogonal projection, giving rise to our new weak scale transfer
operator in function space. Here, we consider the assembling process of the algebraic
representation of this weak coupling operator and show that the assembling can be done
in (quasi-)optimal complexity.

1. Introduction

A detailed analysis of nonlinear phenomena in structure mechanics by using molecular
dynamics is even with the increasing computational power not always possible. This can
be seen as a motivation for mathematical models and simulation methods on a macro
scale, like continuum mechanics and the finite element method. For one thing such
continuum methods on the coarse scale reduce the computational expense. For the other
thing those methods become very challenging when resolving highly nonlinear effects like
cracks. It is the basic idea of multiscale methods to combine fine scale simulations with
coarse scale simulations in order to exploit the advantages of both methods. In the last
decades several approaches have been developed. For an exhaustive overview we refer
to [1] and [2]. Here, we discuss the new function space oriented coupling approach [6]
with respect to some of its more technical aspects.

2. The Decomposition of Scales

For the derivation of our new weak coupling approach, in a first step, we follow Hughes
et al.[3] by applying scale separation techniques. Starting from a total displacement u
in the computational domain Ω ⊂ R

d, we separate the fine scale parts u′ of u from its
coarse scale parts ū by means of the decomposition

u = u′ + ū (1)

see [3, 4]. In our multiscale context, this decomposition is intended to separate the high
oscillatory atomic displacements from the remaining part of the solution on the macro
scale. Any scale decomposition in the fashion of (1) has to deal with the difficulty that
using molecular dynamics on the micro scale, for N atoms, the displacements are given
as point-values in the ”discrete”, i.e., finite dimensional, space R

dN ; in contrast, the
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macro scale displacements are usually assumed to be some functions, e.g., elements of
the Sobolev space . Thus, in order to formulate the scale decomposition (1) properly, a
suitable space has to be chosen, which contains the atomistic displacements as well as
the macro scale displacements.

3. The Weak Coupling Concept

As afore mentioned, the displacements generated by molecular dynamics are given in
the Euclidean space as scattered data

χN = {(Xα, να) : α = 1, . . . , N ;Xα ∈ Ω ⊂ R
d ; να ∈ R

d}.
However, since we attempt to perform a scale separation in the spite of [3, 4], we employ
a mapping ι : χN → L2(Ω), transferring the molecular displacements into function space.
The construction of such a mapping is not an easy task at all. Here, we use techniques
from scattered data approximation to construct a Partition of Unity (see, e.g., [5]). For
each particle, we choose a weight function

Wα : R
d → R with supp(Wα) = ωα such that

⋃
α

ωα ⊃ Ω (2)

We refer to [6] for a more detailed explanation of this process. As a consequence, the
resulting micro scale displacement can be expressed as

u(x) =
∑
α

ναϕα(x) where ϕα(x) =
Wα(x)∑
βWβ(x)

. (3)

In order to identify the coarse scale displacement, we employ an L2- projection onto the
finite element space Sh(Ω) = span{λp}p∈Nh . More precisely, the coarse scale displace-
ment is given by

π : L2(Ω)→ Sh(Ω), (π(w), μ)L2(Ω) = (w, μ)L2(Ω) for all μ ∈Mh (4)

Here, Mh = span{μp}p∈Nh is a multiplier space which needs to fulfills an inf-sup con-
dition. In [6], different choices for the multiplier space are discussed. The algebraic
representation of (4) is given by

π(w) =M−1Rw,

where we have identified π(w) and w with their respective coefficients. For the first
matrix R, we need to evaluate integrals of the form Rpα =

∫
μpϕα . The matrix M with

entries Mqp =
∫
λqμq has the character of a finite element mass matrix.

4. Implementation

The assembling of the transfer operator in dimensions d ≥ 2 is a subtle task. Due to the
large number of atoms in Ω we are in need for an efficient, yet robust, algorithm for the
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construction of the algebraic representation of π. Since the assembling of the rectangular
matrix R requires the computation of all intersections ωα ∩ t, t ∈ T h, T h being the set
of all elements in the finite element mesh, we haven chosen rectangular/cuboid patches
ωα (see [5]). In the engineering literature, often radial patches are used in connection
with a fixed background mesh for the quadrature. This allows for the use of radial basis
functions ϕα which is mathematically very appealing. However, exact integration with
a background mesh and standard quadrature formulas (such as Gauss-Christoffel) is
almost impossible. Rectangular patches allow for exact quadrature, which is needed for
the stability of M−1R . Furthermore, the computation of the cuts ωα∩ t can be handled
by using ideas from computational geometry as described below. For representing the
projection π we need to assemble the matrices M and R . The assembling of M and R
is similar, even though for special choices of Mh the computation of M is simpler ( e.g.,
if Mh = Sh).
For the efficient implementation of the assembling we need to perform the following

tasks with (quasi-)optimal complexity:

1. Given a finite element mesh-element t ∈ T h find all atoms α such that ωα∩ t 	= ∅ .
2. Compute the polytope ωα ∩ t.
3. Decompose ωα ∩ t into simpler polytopes on which quadrature formulas for the
exact integration can be applied.

Step 1 is closely related to the construction of the patches ωα. In [5], tree-based algo-
rithms for the Partition of Unity Method (PUM) are introduced. However, the main
drawback in our application is that they require the introduction of new (artificial)
points/patches, see (2). For lattice systems however the overlap property (2) can be
easily guaranteed for suitably chosen sizes of diam(ωα). The use of an quadtree (oc-
tree) or kd-trees structure yields quasi-optimal complexity for queries as in Step 1.
For the cut-computations in Step 2 we apply the quickhull algorithm [7] along with a
simplex method. For each cut ωα ∩ t we need to compute an interior point. This is
realized by describing each cut ωα ∩ t as the intersection of finitely many halfplanes
{x ∈ R

d | − nTj x + dj ≥ 0, j = 1, . . . , n}. For d = 3, after the introduction of the two
additional variables x4, x5, an interior point (p1, p2, p3)

T =
(
x1

x4
, x2

x4
, x3

x4

)T
can be obtained

from the linear constrained maximization problem:
Maximize x5 among all tuples (x1, x2, x3, x4, x5) such that

−nTj (x1, x2, x3)T + dj · x4 − x5 ≥ 0, j = 1, .., n
and x5 > 0, x4 ≥ ε with small ε > 0 .
Given such an interior point, the intersection algorithm from [8] is applied, which gives
a description of ωα ∩ t by means of halfplanes.
In case of sufficiently smooth basis functions, i.e. ϕα ∈ C1, Step 3 could be carried out
by computing a Delaunay triangulation of the polytope ωα∩t and applying a quadrature
formula of sufficient high order on each triangle/tetrahedron. However, in our application
ϕα ∈ C1 generally is not fulfilled, for the following two reasons:
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Figure 1: Two tetrahedra in R3 and De-
launay triangulation of the re-
sulting cut polytope

Figure 2: Example of a coupled simula-
tion with the weak coupling
method in 2d: transfer of a
wave from micro to macro

• The functionsWα are constructed from one-dimensional splines by a tensor-approach.
For linear splines, a jump in the derivatives along the connections between the cen-
ter of mass of ωα and the midpoints of the edges/sides occurs.

• Even for smooth functions Wα, the derivative of ϕα can be discontinuous along
ωα ∩ ∂ωβ, α 	= β and ωα ∩ ωβ 	= ∅.

As a consequence, for the assembling ofR the setDα,t = {x ∈ t : ∇ϕα discontinuous in x}
needs to be resolved for each t ∈ T h. This can be done by either choosing a Delaunay
triangulation which conforms to the constraint that Dα,t is contained in the union of all
edges/sides, or by subdividing ωα prior to the cut detection and applying Step 2 and
Step 3 to each sub-rectangle/sub-cuboid separately.
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ABSTRACT 
 
 
My presentation describes peridynamics (Silling 2000) as a continuum limit of molecular 
dynamics. Peridynamics uses a nonlocal force interaction, and does not make any assumptions 
(e.g. continuity) on the displacement field in contrast to classical elasticity. Under the assumption 
of a smooth deformation, a theorem is presented that demontrates that as the horizon defining the 
nonlocal force interaction decreases, the peridynamic equation of motion converges to the 
classical (nonlinear) elastic equation of motion.  
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ABSTRACT 
 
The peridynamic model is a reformulation of solid mechanics based on integral equations. It is a 
nonlocal model, accounting for the effects of long-range forces. Correspondingly, classical 
molecular dynamics is also a nonlocal model. Peridynamics and molecular dynamics have 
similar computational structures, as both methods compute the forces on a particle by summing 
the forces from surrounding particles. The peridynamic model can be shown under certain 
assumptions to converge to the classical equation of elasticity [1, 2]. Likewise, certain particle 
models can be upscaled to the classical equation of elasticity [3]. We will concern ourselves with 
the length scales between those of molecular dynamics and classical elasticity, and explore how 
the peridynamic model can be cast as an upscaling of molecular dynamics. Specifically, we 
address the extent to which the solutions of molecular dynamic simulations can be recovered by 
a peridynamic model. 
 

-Posedness of the Linear Peridynamic Model and 
nications in 

Mathematical Sciences, 5, 851 (2007). 

Journal of Elasticity, in press, (2008). 
uum Models from 

4, 531 (2005). 
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Martin Company, for the United States Department of Energy under contract DEAC04- 
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ABSTRACT 
 
 
Molecular dynamics is a classical method to compute constant temperature thermodynamical 
averages. For instance, the evolution of a material science system according to the Langevin 
equation is simulated, while some relevant observables are averaged along the trajectory. It is 
often the case that interesting observables actually do not depend on all the particles, but only on 
the position of some of them, called repatoms, in the QuasiContinuum terminology. In this case, 
it is natural to try and design a strategy to compute more efficiently the canonical averages under 
study. The free energy of the coarse-grained model is another interesting quantity, which leads to 
the constitutive relation of the material, at a given temperature. In this talk, we will consider a 1D 
chain of atoms, and we present a rigorous and efficient method to compute ensemble averages 
and free energies, based on a thermodynamic limit procedure [1]. We consider the NN and the 
NNN cases and illustrate the obtained theoretical results with numerical simulations. Our 
strategy also applies to chain-like materials, such as polymers. 
 

-temperature Coarse-graining of One-

preprint RR-6544 (may 2008), available at http://hal.inria.fr/inria-00282107/en/. 
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ABSTRACT 
 
 
Inverse computational design of materials is a formidable task requiring solutions to strongly 
coupled properties and constraints and direct linkage to micrstructure. The resulting coupled 

properties and constraints linked to the microstructure using statistical correlation functions. 
However, a rigorous link between statistical continuum mechanics relations and properties 
requires a complete representation of microstructure using n-point correlation functions and 

f field equations. While many materials 
properties are often modeled by their ensemble averages, other properties (eg. fracture, fatigue) 
strongly relevant for their performance in structural applications are affected by the tails of the 
distribution functions. Statistical representation of microstructures using higher order correlation 
functions within the statistical continuum mechanics framework can provide a direct 
mathematical link between microstructure and properties (and constraints). Such a linkage is also 
an important tool for inverse computational materials design. Not only can it provide the 

ations and requirements. The output of 
the inverse design is then the set of higher order probability distributions functions that represent 
the optimum microstructure. This makes the task of reconstruction and realization of realistic 
microstructures from the set of statistical correlation functions another computational and 
mathematical challenge in the process. Several methodologies have been developed to 
accomplish this task and more work is needed to develop more efficient algorithms that can 
address the contribution from higher order functions. 
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ABSTRACT 
 
 

In this paper, a review of recent methods to search for transition states on a potential energy surface that 
characterize phase transitions is given. Finding the saddle point(s) and the minimum energy path on a 
complex potential energy surface is the major challenge to accurately simulate the kinetics of chemical 
reactions and phase transitions. Once the saddle points have been identified and the activation energy for 
the transition is known, one can apply methods such as kinetic Monte Carlo and accelerated molecular 
dynamics to simulate the transition process. The transition state searching methods are categorized into 
two groups, minimum energy path search and saddle point search. We primarily summarize the methods 
developed in the last two decades.  
 
 
1. Introduction 
 
A phase transition is a geometric and topological transformation process of materials from one 
phase to another, each of which has a unique and homogeneous physical property. In an effort to 
simulate a reaction or transition, a potential energy surface (PES) that characterizes the process is 
first generated. Then, a minimum energy path (MEP) is computed which represents the transition 
pathway in the configuration space. With knowledge of the activation energy, the rate constant 
that defines the speed of the process then can be calculated using transition state theory (TST). 
Finally, the reaction or transition can be simulated by methods such as kinetic Monte Carlo and 
accelerated molecular dynamics. The most important step involved in modelling phase transition 
is the knowledge of the activation energy barrier and rate constant involved in the transition. 
Various numerical methods to search transition paths and saddle points have been developed. 
Some review papers [1,2,3] were published. However, there have been new methods and 
improvements that have yet to be documented. This paper gives a brief summary of these latest 
advancements without listing references due to the page limit. Interested readers are referred to 
[4,5] for more detailed reviews and references of the methods discussed.  
 
We categorize the computational modelling methods into two types: transition path search and 
saddle point search. Transition path search methods generate the MEP on the PES, whereas 
saddle point search methods aim at finding the saddle points on the PES. In the rest of the paper, 
we summarize transition path search methods in Section 2 and saddle point search methods in 
Section 3 respectively. 
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2. Transition Path Search Methods [4] 
 

2.1 Chain-of-States Methods 
 
In chain-of-states methods, the transition pathway is represented as a number of intermediate 
states, which can be looked at as snapshots of the atomic configurations as the atomic structure 
transforms from initial to final state along the transition pathway. Usually it requires that the 
initial and final states should be known. After the search converges, the discrete states are 
chained to each other, usually by interpolating between the states, to obtain the transition 
pathway and saddle points. They work well in transitions where there may be more than one 
saddle point. In situations where there may be multiple transition pathways, the methods will 
converge to the one that is closest to the initial guess for the pathway. 
 
The nudged elastic band (NEB) method and its extensions are among the most used and well-
developed chain-of-states methods. The NEB is an extension of the plain elastic band (PEB) 
method, where images, which are points in the configuration space corresponding to intermediate 
states, are connected by springs. In PEB, images move according to both the true force due to the 
gradient of potential energy and the spring force. The relaxed band should converge to the MEP. 
However, when the spring constant is large enough, the perpendicular components of spring 
forces (with respect to the direction of path) pull images away from saddle points at sharp turns 
of the path. This corner cutting makes PEB overestimate the saddle point energy. On the other 
hand, when the spring constant is small, the parallel components of true forces make images 
slide down towards the minima. This sliding down reduces the resolution of the region of interest 
(ROI) near the saddle point. The NEB method is targeted to solve the problems of corner cutting 
and sliding down by removing the perpendicular component of spring force and the parallel 
component of true force in the total force on each image. The only effect of springs now is to 
keep images evenly distributed within the path. Nevertheless, when the potential energy changes 
rapidly, the path has kinks where the parallel component of the energy gradient is much larger 
than the perpendicular one, because the restoring perpendicular components of forces are weak. 
Another shortcoming of NEB is that the actual saddle point may not be located by one of the 
images directly. Further extensions of the NEB method try to resolve these issues. 
 
The improved tangent NEB (IT-NEB) method reduces the chances of getting kinks by better 
estimating the tangent direction of the path to approximate MEP at each image. Instead of the 
central finite difference approximation between one image and its two neighbours as in the 
original NEB method, only one neighbour is used for tangent estimation in IT-NEB. The 
climbing image NEB (CI-NEB) method was further developed so that the image with the highest 
energy actively climbs up to locate the actual saddle point. An alternative to resolve the issue of 
kinks is the doubly nudged elastic band (DNEB) method where a manipulated perpendicular 
component of spring force is introduced back into the total force such that the MEP can be 
restored. To locate the actual saddle points, the eigenvector following (EF) optimization 
approach can be applied to the result of NEB. To increase the resolution of ROI, adaptive spring 
constants can be used based on energy levels or gradients. A free end NEB (FENEB) method 
was proposed to keep one end of the band free so that it can swing at a fixed energy level, thus 
the number of images can be reduced while still maintaining enough resolution. Similar to the 
String method, Spline-based interpolation was also introduced into the NEB method extension. 
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The second group of chain-of-states methods is the String methods. The transition path is 
represented continuously as Splines. Subject to perpendicular forces, the curve evolves and 
converges to the MEP alternately in two steps: in the evolution step, the curve is discretized as a 
string of points and solved by standard ODE solvers; in the reparameterization step, the points 
are redistributed along the string based on parameterization constraints and Spline interpolations. 
Compared to the NEB methods, where the number of images is fixed during searching, the 
number of points in the String method can be dynamically modified. The growing String method 
is an extension where the points of strings are initially located at the two ends of reactant and 
product. Then the string grows by inserting new points so as to meet at the saddle point upon 
convergence. The quadratic String method is formulated based on a multi-objective optimization 
approach. Based on the local quadratic approximation of the PES, the quasi-Newton technique is 
applied to search the MEP. 
 

2.2 Other Methods 
 
In the conjugate peak refinement (CPR) method, saddle points and the approximated MEP are 
found by searching the maximum of one direction and the minima of all other conjugate 
directions iteratively, because exactly one eigenvalue of the Hessian matrix at the saddle points 
is negative. The accelerated Langevin dynamics (ALD) method is a stochastic transition path 
sampling method. Paths are sampled by solving the modified Langevin equation with negative 
friction coefficients to accelerate the transition. The MEP then is the average of all sampled 
paths. In the concerted variational strategy (CVS) method, the transition motion is described as 

 
integral instead of differential equations. Trajectories have a plane wave representation instead of 
regular polynomials. The resulted transition trajectory reflects thermal behaviors instead of a 
smooth MEP curve. The Hamilton-Jacobi (HJ) method generates the MEP by solving a 
Hamilton-Jacobi type equation with special cost functions.  
  
 
3. Saddle Point Search Methods [5] 
 

3.1 Local Search Methods  
 
The automated surface walking algorithm is one of the original saddle point search methods. 
With local quadratic approximations of PES, the search is based on eigenvectors of the Hessian 
matrix, which is updated iteratively similar to the quasi-Newton technique. It also involves the 
scaling of one of the active coordinates in order to make the Hessian eigenvalues lie in a required 
range. In the partitioned rational function optimization method, PES is approximated by 
rationalized quadratic surfaces, and the search is conducted by partitioning the minimax problem 
into two separate maximization and minimization subproblems. 
 
More recently, the ridge method searches the saddle point by travelling down along the ridge 
with a pair of images. The direction of the connecting line between the two images can be 
constrained to make sure the pair is kept on the ridge. Similarly, the dimer method searches the 
saddle point based on a pair of images. However, the small distance between the two images is 
fixed. Starting from one basin, the dimer moves uphill in the translation step. In the rotation step, 
it rotates towards the lowest curvature mode of PES by minimizing the dimer energy through the 
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conjugate gradient approach. Later in the improved dimer method, the curvature is calculated 
differently with reduced numbers of gradient calculations to improve the performance and 
robustness under numerical noises. In the synchronous transit method, the transition state is 
initially estimated by minimizing the interpolated inter-atomic distances. Then the saddle point 
estimate is further refined by employing the conjugate gradient optimization method. In the 
reduced gradient following method and the reduced potential energy surface model method, 
stationary points are intersections of zero-gradient curves and surfaces respectively with 
distinguished coordinates removed. Saddle point search is within the subspace of these zero-
gradient curves or surfaces.  
 

3.2 Global Search Methods 
 
Different from local search, the global search methods ensure the saddle point with the 
maximum energy is located if the search converges to one. The DHS method searches the saddle 
point by iteratively reducing the distance between reactant and product images while minimizing 
the energy subject to the equal distance constraint at each step. The Activation-Relaxation 
Technique searches saddle points in two steps. In the activation step, one image jumps from a 
local minimum towards a saddle point according to a controlled force. In the relaxation step, it 
moves from the saddle point to another minimum. Thus it can traverse many saddle points 
without the knowledge of final product. In the Step and Slide method, the energy levels of two 
images from the initial and final states are gradually increased. Then the distance between the 
two is minimized while both images are kept in the same isoenergy surfaces. The interval 
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ABSTRACT 
 
 
We study finite element heterogeneous multiscale method for the Gilbert's equation, the 
governing equation of dynamic micromagnetism. We consider its form mmmm tt     
, where m  is the magnetisation and  is the damping factor, expressing the magnitude of 
dissipation in the system. We construct the corresponding compression and reconstruction 
operators and study their properties.  
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ABSTRACT 
 
 
Many materials with heterogeneous multiscale fractal structure are found in nature. Examples 
include biological tissues and bone, some rock such as sandstones, and aero-gels. In such 
materials the amount of geometrical detail observed in the microstructure increases from scale to 
scale in a self-similar manner, they lack characteristic length scales and the Hausdorff dimension 
is smaller than that of the embedding space. They are the prototypical examples of problems 
without scale decoupling. Furthermore, the microstructure is multiscale and stochastic, in the 
sense that the generating operators that map the geometry from one scale to the next are 
stochastic. In this work [1], we develop a method by which boundary value problems can be 
solved for these complex multiscale materials with minimal computational effort. Use is made of 
the scaling properties of the geometry and of stochastic finite elements in which the solution is 
approximated using chaos polynomials. The talk will review the formulation and a number of 
examples used for verification.  
 

Boundary value problems defined on stochastic self-similar 
74, 668 

(2008). 
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Abstract

Peridynamics is a recently developed theory of solid mechanics that
replaces the partial differential equations (PDE) of the classical con-
tinuum theory with integro-differential equations (IDE). We apply Fi-
nite Element Methods (FEM) to implement the peridynamic model.
Since the integro-differential equations remain valid in the presence of
discontinuities such as cracks, the method has the potential to model
fracture and damage with great generality. We use piecewise constant
functions in regions where discontinuities may appear and piecewise
linear function in areas where the solutions is smooth and investi-
gate how to combine these two methods. We are also interested in
the choice of the horizon radius to implement the peridynamic model
more accurately. Theoretical analysis and numerical results for differ-
ent cases are given.

Key words: peridynamics, finite elementmethods, integro-differential
equations
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ABSTRACT

We investigate several issues connected with bridging methods for AtC coupling. We study differ-
ent coupling approaches, using various blending models, as well as the influence of the parameters
of the models on the results. One approach we focus on is the use of the Lagrange multiplier
method for enforcing constraints on the atomistic and continuum displacements in the bridge re-
gion. In addition, we investigate a multiple-neighbor interaction, applying a number of boundary
treatments in the atomistic region.

1. Introduction

Atomistic models are computationally too expensive, but continuum models are not accurate
enough for describing singular phenomena such as point loads, cracks, etc. For that reason, there
is a need of combining atomistic and continuum models. In the Atomistic to Continuum (AtC)
coupling technique, we implement a heterogeneous domain decomposition, i.e. the continuum
model is applied to part of the domain where an average description of the system is sufficient,
while the atomistic description is implemented on other regions, where microscale behavior analy-
sis is needed. The main question arising is how to couple between the different regions, taking into
account the different nature of the models implemented on each one. In [1] and [2], a force-based
blending model is applied to couple between the atomistic and the continuum models, and an inter-
face region is used to constrain the atomistic displacements by the interpolation of the continuum
approximation. In this paper, we follow a similar approach as in [3], using the Lagrange multipli-
ers method to impose the constraints, reducing the number of constraints equations. In contrast to
[1], we blend the models at the energy level, and use the potential energy minimization technique
to find the equilibrium configuration of our system.

Another issue of interest is the treatment of boundary conditions in the atomistic region. In phys-
ical systems, the interaction in the general case is of long-range type, thus a multiple-neighbor
interaction has to be implemented in order to get a correct approximation to a real interaction. This
brings out a difficulty in relation to the boundary of the system where only a few atoms appear
close to the boundary. Therefore, an appropriate treatment is needed in order to correctly describe
the system interactions around the boundary. We study several different boundary treatments for
multiple-neighbor interactions in the atomistic region.

∗This work was supported by the Office of Science of the U.S. Department of Energy under grant number DE-
FG02-05ER25698.
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2. The Model

The present model combines atomistic and continuum expressions, using blending functions to
determine the contribution of each of the representations in each region to the global potential
energy. We divide our domain in three regions: ΩC0 the continuum region, ΩM0 the atomistic region,
andΩint0 = ΩM0 ∩ΩC0 the blending interface for the continuum and the atomistic representations. An
illustration of our domain, assuming ΩM0 = [Xi, c], ΩC0 = [a,Xf ], and Ωint0 = [a, c], is presented
in Fig 1.

����������������������������

a cXi Xf

ContinuumAtomistic Ωint0

Figure 1: 1-D representation of the domain decomposition. The red lines represent the F.E. nodes,
and the blue circles the atomistic particles.

The total potential energy of the system is written as W = W int − W ext, where the internal
potential energy of the system

W int =

∫
ΩC

0

ξ(X)wC(F)dΩ
C
0 +

1

2

∑
I

∑
J

θI,JwM(xI ,xJ) (1)

and the external potential energy of the system

W ext =

∫
ΩC

0

ξ(X)B · udΩC0 +
∫
ΓC

0

ξ(X)T · udΓC0 +
∑
I

θ(XI)f
ext
I · dI (2)

with wM(xI ,xJ) the potential energy of the atomistic bond I-J , wC(F) the potential energy den-
sity of the continuum (as a function of the deformation gradient F), xI = XI + dI the position
of the particle I in the current configuration, with dI the displacement of the particle I from its
position in the reference configuration XI , u the continuum displacement, f extI the external force
applied on the particle I , ΓC0 the boundary of ΩC0 , B the external volumetric force, θI,J a function
of θ(X), XI and XJ , with ξ(X) and θ(X) blending functions satisfying ξ(X) + θ(X) = 1.

To apply the displacement constraints between the continuum and atomistic descriptions in the
interface, we use the Augmented Lagrangian method where we add a penalty term to the equation
of the potential energy in addition to the Lagrange multipliers for the constraints as follows:

WAL =W
int −W ext + λT · g + 1

2
pgT · g (3)

with λ = {λI} a vector of Lagrange multipliers, g = {gI} the constraints equation vector, and p a
penalty parameter. In addition, we use a basis of shape functions (similar to what is done in finite
element methods) for the Lagrange multipliers.

In this work, we implement a 1-D linear elasticity/linear spring model with linear constraints.
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3. Model analysis

We analyze the model performance in terms of the error of the AtC model in relation to the full
atomistic one, and compare it with a pure continuum model. In particular, we investigate the model
sensitivity on the following components

1. Lagrange multiplier grid properties: Uniformity and resolution.

2. Finite element grid resolution.

3. Penalty parameter value.

4. Blending functions choice in the interface.

5. Lagrange multiplier basis functions choice.

6. Pairwise atomistic blending function (θI,J ) form.

This research implements different blending models, and deals with potential problems arising in
the bridging region. In particular, we investigate the correct contributions of the continuum and
atomistic expressions to the forces on the particles of the system.

4. Multiple-neighbor interaction

As an approach to long range interactions we implement a multiple-neighbor interaction, while
keeping the linearity of the interaction type. Because we request each particle to interact with
several neighbors, we need to apply the interaction in such a way that it will remain consistent with
the same PDE applied to the continuum region used in the one-neighbor interaction. The equation
of equilibrium of forces, for generalized number of neighbor interactions, has the following form:

−
α+Nneig∑

β = α−Nneig

β �= α

K̃a,|β−α|
|xα − xβ| (dβ − dα) = f

ext
α (4)

with K̃a,|β−α|/|xα − xβ| the linear spring force constant for the interaction between the particles α
and β, and Nneig the number of neighbor interactions. We implemented two approaches:

1. Uniform force constant: K̃a,|β−α| = 2Ka

Nneig(Nneig+1)

2. Non-uniform force constant: K̃a,|β−α| = Ka

|β−α|Nneig

In order to check the error behavior of the multiple-neighbor AtC model in relation to the pure
atomistic case, we isolate the boundary effects by implementing a “cheating method” combined
with a “ghost atoms” boundary treatment, i.e. we assume that atoms near the boundary interact
with “ghost atoms” beyond the boundary, while giving the “ghost” atoms the exact solution for
their displacements as boundary conditions. We found that the non-uniform force constant choice
gives smaller errors in the case of a constant load applied to the system.
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As part of the multiple-neighbor interaction implementation, we need to apply a boundary treat-
ment for those particles close to the boundary, which are not surrounded by enough particles.
Generally speaking, if we change the number of neighbor interactions (Nneig ), the value of the
force constant changes accordingly (as presented above). In the following, we present different
approaches we implemented for the boundary of the atomistic region:

1. Truncation: We assume an interaction with Nneig neighbors to the left and to the right, but
truncate the interaction for atoms beyond the boundary.

2. Asymmetry: We use a different number of neighbor interactions to the left and to the right,
using the maximum number of neighbors available (up to Nneig) inside the domain.

3. Adaptive: We use the same number of neighbor interactions to the left and to the right, using
the maximum number of neighbors available (up to Nneig) inside the domain.

4. Extended Boundary Conditions: We extend the boundary conditions inside the domain to
the first Nneig atoms closer to the boundary, and use Nneig neighbor interactions for the rest.

5. Ghost Atoms: We add “ghost atoms” beyond the boundary, having the same boundary condi-
tions as the boundary atoms. The atoms inside the domain have Nneig neighbor interactions.

We found that the adaptive technique gives the best result, but it is not applicable to a general
interaction form, thus the ghost atoms seems to be a good alternative.

5. Conclusions

We have presented an Atomistic to Continuum coupling approach where different models are cou-
pled at the energy level, and the constraints are introduced through Lagrange Multipliers. The per-
formance of the model is studied as a function of different parameters of the model. In particular,
multiple neighbor interaction approaches with corresponding boundary treatments are presented.
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ABSTRACT 
 
 
Thermal cycling tests were carried out on carbon steel up to 1.05 C% . A single run was 
performed at upper temperature of 500C0 and lower temperature of 30C0 in different  media 
(water, sea water, and oil) . For several numbers of cycles up to 30 cycles for an accurate 
determination of heating and cooling times. The effect of thermal cycling on the hardness were 
evaluated, from the obtained test results, it was found that the hardness decreased without 
increasing the thermal cycling for both the annealed and tempered but this decreased in hardness 
very small and can be neglected. 
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ABSTRACT 
 

 
A spinel structure of an oxynitride material in the form M3NO3 (M=B, Al, Ga or In) is 
considered as being derived from a reaction of the form M2O3 + MN  M3NO3. Various 
possible phases of MN and M3O3 are considered that could lead to the M3NO3 spinel material. 
The spinels containing B and Al exhibit higher resistance to compression and shear than those 
containing Ga and In and these are suggested to be potentially important hard materials possibly 
formed under extreme conditions. Calculated energetics of the proposed reaction favor the 
formation of the spinels containing Ga and In with such materials having potentially significant 
optoelectronic applications. 
 
 
 

Mathematical issues in multiscale materials modeling

82



The Attainability of Hashin-Shtrikman Bounds

Liping Liu

1 Division of Engineering and Applied Science, California Institute of
Technology, Pasadena, CA 91125; liuliping@caltech.edu.

ABSTRACT

We discuss the attainability of the Hashin-Shtrikman (HS) bounds for multiphase compos-
ites, including those of conductive materials and elastic materials. A necessary and sufficient
condition is obtained on the microstructures attaining these bounds. This condition pro-
vides a simple characterization of the attaining microstructures in terms of gradient Young
measure, which enables us to attack the problem whether the HS bounds are attainable by
the standard method in microstructure theory.

1. Introduction

One of the central problems in the theory of composites is to find the optimal bounds on
the effective properties with or without restriction on the volume fraction, and if possible,
to characterize all the microstructures that attain these optimal bounds ([1]). Among the
most important bounds ([2], [1]), the Hashin-Shtrikman (HS) bounds appear ubiquitous for
their simplicity and the perfect symmetry between the upper and lower bounds. It is now
well known that the HS bounds describe the Gθ-closure of two-phase well-ordered conductive
composites ([3], [1]), and that the HS bounds are insufficient to describe the Gθ-closure of
composites of three or more phases ([4]). In the latter situation, the HS bounds may or may
not be attainable. We study the conditions under which the HS bounds become attainable
(resp. non-attainable) and how the attainable (resp. non-attainable) HS bounds depend
on the volume fractions and material properties. This is the key problem we are going to
address here. To this end, we begin with a novel derivation of the HS bounds for multiphase
composites. The advantage of this new derivation is that it yields the attainment condition
very naturally. In terms of a simple potential problem, the main condition is that the second
gradient of the solution of the potential problem remains constant in all but the matrix
phases. Further, using the concept of gradient Young measure ([5]), we obtain a simple
and complete characterization of all the attaining microstructures of the HS bounds. From
the basic relation between gradient Young measures and quasiconvex functions ([5]), we can
then attack the problem by the standard approach in microstructure theory: we construct
concrete microstructures to find the attainable HS bounds, and use quasiconvex functions
to restrict the microstructures and find the non-attainable HS bounds. Below we present an
outline of our arguments and main results. The details of them can be found in ([6]).
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2. Hashin-Shtrikman bounds and their attainment conditions

To setup the problem, we consider a periodic (N + 1)-phase composites in n-dimensional
space of phases L0, · · · ,LN , where Li : IR

n×n → IRn×n, symmetric and positive semi-definite
(positive definite if restricted to IRn×n

sym ), is the forth-order tensor describing the material
properties of phase-i for i = 0, · · · , N . Let Y = (0, 1)n be the unit cell of the periodic
composite, Ωi ⊂ Y be the regions occupied by phase-i and θi = vol(Ωi) be the volume
fraction of phase-i for i = 0, · · · , N . By definition, the effective tensor Le of the composite
is given by (see [1]),

F · LeF = min
u∈W 1,2

per(Y,IR
m)

∫
Y

(∇u+ F) · L(x)(∇u+ F), (1)

where L(x) takes value of Li if x ∈ Ωi and F is an arbitrary n × n constant matrix. Since
the equation Tr(∇u) = f admits a solution u ∈ W 1,2

per(Y, IR
m) for any given f ∈ L2per(Y )

with
∫
Y
f = 0, equation (1) can be rewritten as

F · LeF = min
f ∈ L2

per(Y )R
Y f = 0

min
u ∈W 1,2

per(Y, IR
m)

Tr(∇u) = f

∫
Y

(∇u+ F) · L(x)(∇u+ F). (2)

To derive the lower and upper bounds for the effective tensor we assume the tensor L0 of
phase-0, the so-called matrix phase, can be written as

(L0)piqj = μ1δijδpq + μ2δpjδiq + λδipδjq, (3)

where μ1 ≥ μ2, μ1 + μ2 > 0, and λ > −μ1+μ2

n
. The above form of tensors is convenient

since it covers both cases of elasticity and conductivity. For simplicity, we assume Li−L0 is
invertible restricted to IRn×n

sym for all i = 1, · · · , N . Further, we write Li ≥ L0 (resp. Li ≤ L0)
if Li − L0 is positive semi-definite (resp. negative semi-definite) and let

�ci = I · (Li − L0)
−1I, k0 = μ1 + μ2 + λ, γ =

N∑
i=0

θi
1/k0 + �ci

, �c∗ =
1

γ
− 1

k0
. (4)

For the lower bound, we assume that Li ≥ L0 for all i = 1, · · · , N and hence

(X + F) · (Li − L0)(X + F) ≥ 1

�ci
Tr(X + F)2 ∀ i = 1, · · · , N & X ∈ IRn×n. (5)

Therefore, the inner minimum of the r.h.s. of Eqn (2) can be bounded from below as

min
u ∈W 1,2

per(Y, IR
m)

Tr(∇u) = f

∫
Y

{
(∇u+ F) · [L(x)− L0](∇u+ F) + (∇u+ F) · L0(∇u+ F)

}

≥
N∑
i=1

∫
Ωi

1

�ci
(f + Tr(F))2 + k0

∫
Y

f2 + F · L0F, (6)
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where we have used∫
Y

∇u · L0∇u =

∫
Y

[
μ1|∇u|2 + μ2Tr[(∇u)2] + λTr(∇u)2

]
≥ k0

∫
Y

Tr(∇u)2.

The above inequality can be easily shown by Fourier analysis. Similarly, for the upper bound,
we assume that Li ≤ L0 for all i = 1, · · · , N and hence Eqn (5) holds with “≥” replaced by
“≤”. Therefore, the inner minimum of the r.h.s. of Eqn (2) can be bounded from above as

min
u ∈W 1,2

per(Y, IR
m)

Tr(∇u) = f

∫
Y

· · · ≤ min
ξ ∈W 2,2

per(Y )
Tr(∇∇ξ) = f

∫
Y

(∇∇ξ + F) · L(x)(∇∇ξ + F)

≤ min
ξ ∈W 2,2

per(Y )
Tr(∇∇ξ) = f

∫
Y

{
(∇∇ξ + F) · [L(x)− L0](∇∇ξ + F) + (∇∇ξ + F) · L0(∇∇ξ + F)

}

≤
N∑
i=1

∫
Ωi

1

�ci
(f + Tr(F))2 + k0

∫
Y

f2 + F · L0F, (7)

Plugging Eqn (6) and Eqn (7) into Eqn (2) and solving the outer minimization problem, we
arrive at {

F · LeF ≥ F · L0F+ Tr(F)2/�c∗ if Li ≥ L0 ∀ i = 1, · · · , N,
F · LeF ≤ F · L0F+ Tr(F)2/�c∗ if Li ≤ L0 ∀ i = 1, · · · , N,

(8)

which coincides with the classic HS bounds for multiphase composites (see [1]). If we track
back our arguments, it is not hard to show that the inequalities in Eqn (8) hold as equalities
if and only if the following overdetermined problem{

Δξ =
∑N

i=0 piχΩi
on Y,

∇∇ξ = Qi on Ωi, i = 1, · · · , N,
(9)

admits a solution ξ ∈W 2,2
per(Y ), where

Qi = F − Tr(F) (1 + k0�c∗)�c∗(1 + k0�ci)
(Li − L0)

−1I, pi = Tr(Qi) (i = 1, · · · , N), (10)

and p0 is such that
∑N

i=0 θipi = 0. In terms of gradient Young measure ([5]), this necessary
and sufficient condition can be rephrased as the following theorem.
Theorem. Consider (N + 1)-phase composites specified as above. The effective tensor Le

(cf. Eqn (1)) satisfies the HS bounds (8). Further, the inequalities in (8) hold as equalities
if and only if there exists a gradient Young measure ν with zero center of mass satisfying

ν =
N∑
i=1

θiδQi
+ θ0μ and suppμ ⊂ {X ∈ IRn×n

sym : Tr(X) = p0}, (11)
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where δQi
denote the Dirac mass at Qi, μ is a probability measure, and matrices Qi and p0

are as in Eqn (10).

3. New results on the attainable and non-attainable Hashin-Shtrikman bounds

The above theorem converts the problem whether the HS bounds are attainable into the
problem whether a particular form of gradient Young measure exists. The latter problem
is more generic since it asks whether certain gradient field exists and is independent of
material properties. Indeed, it is the special gradient field, not the geometry or topology,
that entails the optimality of a microstructure. Further, this Theorem facilitates the use of
many tools from the established theory of microstructure (see [7]). For example, from the
convex property of gradient Young measures (see [5]), we can show that if all matrices Qi

(i = 1, · · ·N) are positive semi-definite or negative semi-definite, then the gradient Young
measure ν in Eqn (11) exists. This result, by the above Theorem and Eqn (10), enable us to
find parts of the attainable HS bounds (8). Also, using the quasiconvex functions ([8], [7])
we can find restrictions on the gradient Young measure ν in Eqn (11), which then implies the
non-attainable parts of the HS bounds (8). In conclusion, we obtain a simple characterization
of the attaining microstructures of the HS bounds in terms of gradient Young measure which
facilitates the construction and restriction of the optimal microstructures.
The author gratefully acknowledges the financial support of the US Office of Naval Research through

the MURI grant N00014-06-1-0730.
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ABSTRACT 
 
 

In this work, we propose to construct an Atomistic Kinetic Monte Carlo paradigm where the 
point defects migration barriers are calculated with few approximations on the basis of a 
Molecular Dynamics (MD) based method. The algorithm is speeded up with an Artificial Neural 
Network, trained to reproduce the migration barriers on the basis of the Local Atomic 
Environment, thus avoiding the need of an on-the-fly use of MD.  
 
1. Introduction 
 
It is widely accepted that the formation of copper-rich precipitates plays a key role in nuclear 
reactor pressure vessel steel hardening and embrittlement [1]. With this respect, any method 
capable of predicting the evolution of solute atom precipitation versus radiation dose helps at 
designing or monitoring nuclear reactor components (see e.g. [2][3]). 
 
The Atomistic Kinetic Monte Carlo (AKMC) simulation [4] is a compromise between Molecular 
Dynamics (MD), which considers events at the atomic time and length scale, and coarse-grained 
tools, such as Object KMC [5] and rate theory [6], that are necessary to extend the simulation to 
the macroscopic scale. AKMC techniques retain the atomic level description, but reduce the 
number of possible events to the very basic mechanisms of single-defect diffusion and can thus 
encompass a timeframe (much) larger than MD. 
 
In the AKMC algorithm, the events are vacancies and/or interstitials migration at a close 
neighboring position. The probabilities are calculated with the eqn. (1), where 0, j  is a prefactor 

kB T is the 
absolute temperature and Ej is the Migration Energy (ME) at 0K. The index j denotes the event 
for which the probability is calculated. The summation over k in the denominator is over all 
possible events. When the event is chosen, the simulation time is incremented with a mean 
residence time algorithm.   
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simulation, depending on the instantaneous Local Atomic Environment (LAC) of the migrating 
point defects. They are classically estimated with empirical formula based on the difference on 
energy induced by the migration, or numerically fitted on the basis of a limited amount of ab 
initio data.  
 
It is clear that the ME quality (depending on the method used to calculate it) is strongly 
influencing the kinetic path followed by the system. Empirical formulas based on the energy 
difference have the advantage to be very easy to do on-the-fly, but give a poor description of the 
energy barriers, mainly because there are in reality very poorly correlated with the energy 
difference. On the other extremity, ab initio methods are unquestionably the state-of-the-art but 
can only provide a rather limited amount of calculations because of their inherent complexities. 
 
 
2. Methodology 
 
In our method, we propose to calculate the ME with an MD based tool. The Nudged Elastic 
Band (NEB) method [7] optimizes the Minimum Energy Path (MEP) of the migrating particle 
from the initial to the final state of the system (that are both relaxed with a conjugate gradients 
method), by constructing a chain-of-states linked with fictive springs. The saddle point in the 
MEP, corresponding to the ME, is found with a good accuracy. This method therefore provides 
an automated procedure to calculate the ME, entirely based on the inter-atomic potential used in 
an MD framework to calculate the total energy of the system. 
 
The NEB method allows us to calculate any ME in a reasonable timeframe. As an order of 
magnitude, the calculation of the vacancy migration energy takes about 100 seconds on a modern 
mono-processor machine. This is, however, much too slow to envisage an on-the-fly use in the 
AKMC simulation. But the generation of considerably large databases of examples, 

 
 
Once large databases of NEB calculated examples have been generated, we train an Artificial 
Neural Network (ANN) to construct a mathematical regression between the LAC and the 
corresponding ME. The ANN input variables are categorical integers, describing the chemical 
nature of the neighboring atoms situated at fixed positions in a rigid lattice grid of coordinates. 
Our ANN is a Multi-Layer Perceptron with only one hidden layer, trained with a Levenberg-
Marquardt algorithm [8]. Only a small part of the ME database is used as a training set, to adapt 
the degrees of freedom in the ANN. The rest is used as a validation set, to assess the ANN 
extrapolation qualities on never seen examples. Once trained, the ANN is by 6 to 7 orders of 
magnitude faster than NEB in providing an estimate of the ME. 
 
 
 
 

Mathematical issues in multiscale materials modeling

88



3. Results 
 
 
Figure 1 shows the ANN quality of predictions for a simple FeCu binary system, with only one 
vacancy. A database of more than 100,000 randomly generated examples has been NEB 
calculated. The ANN has been trained using only 15,000 of them, taking the third nearest 
neighbors of both the migrating atom and its destination into account (that makes 39 variables 
for a BCC crystallographic structure). The average ANN error measured on the rest of the 
database is of the same order as the estimated NEB accuracy. We can therefore consider that the 
use of an ANN, in this case, is fully equivalent than if NEB is used on the fly during an AKMC 
simulation. 
 
 

 
 

Figure 1  ANN quality of prediction for the 1nn migration 
of a vacancy in an FeCu alloy. 39 atomic sites are taken 
into account. The average error is 0.51% and R2 = 0.999. 
The points shown where not used for training. 

 
 
The problem of Self-Interstitial Atom (SIA) migration is much more complicated than for 
vacancies, because of the strong and highly anisotropic interaction between close ones. We still 
have some problems to calculate their ME with a sufficient accuracy, because the relaxation of a 
smal
positions, can be a delicate issue. The problem is to guarantee that the migration path found by 
the NEB method gives truly the lowest possible saddle point energy for a given transition. 
Meanwhile, we have managed to train the ANN to predict the difference of (relaxed) energy for 

shown on figure 2. 145 atomic sites were taken into account and 80,000 examples were used for 
training.  
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Figure 2  ANN predictions of the relaxed energy 
difference for the 1nn migration of a <110> dumbbell 
in pure Fe. The X axis is the MD value, the Y axis is 
the ANN predicted. The average error is 0.07 eV and 
R2 = 0.89. 
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ABSTRACT 
 
 
The first part of this document demonstrates developed numerical isothermal (IT) diagrams, 
which are built up by Temperature-time (T-t) elements, approximated from four measured base 
IT diagrams connected to two carbon contents and two austenitisation temperatures. The second 
part of this document demonstrates the developed numerical continuous cooling (CC) diagrams, 
which are built up also by Temperature-time (T-t) elements, approximated from four measured 
base CC diagrams connected to the same two chemical compositions and two austenitisation 
temperatures. The third part of the document shows the regression possibilities by creation of 
virtual IT diagrams from the numerical approximated base transformation diagrams for a third 
carbon content and two given austenitisation temperature, and shows the comparison between 
the calculated virtual diagram data and the measured data (charaterised by the third carbon 
content and the applied austenitisation temperature at the measurement). The fourth part of the 
document shows the regression possibilities by creation of virtual CC diagrams from the 
numerical approximated base transformation diagrams for a third carbon content and two given 
austenitisation temperature, and shows the comparison between the calculated virtual diagram 
data and the measured ones (charaterised by the third carbon content and the applied 
austenitisation temperature at the measurement).  
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ABSTRACT 
 
 
We present the first derivation of the analytic solution for the crowdion migration potential 
which takes into account discreteness within the double sine-Gordon model. The analysis is 
guided by the group-specific trend in the shapes of the periodic substrate potentials calculated for 
the body-centred-cubic transition metals in groups 5B and 6B of the periodic table. We combine 
density-functiona
version of the analytical Frenkel-Kontorova model, and determine the effective potential 

-of-mass. This reveals important underlying differences 
between these bcc metals, which are inaccessible to either the numerical or analytical approaches 
alone, and offers a clear explanation for the significantly higher crowdion migration 
temperatures observed in the metals of Group 6B. This work is supported by the UK Engineering 
and Physical Sciences Research Council and by EURATOM.  
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ABSTRACT 
 
Some lattice defects, such as phase precipitates and dislocations, have long-range interaction 
range with migrating species, hence spectrum of the interaction energy.  The dissociation rate of 
such complexes is not a reciprocal of the mean dissociation time and this is due to non-
exponential distribution of dissociation times.  In this paper, for the first time, an equation for the 
dissociation rate and the rate equation for concentration of such complexes are derived.  It is 
shown that the modifications to the conventional expression for the reaction rate are connected 
closely with action of a general principle that the slowest process in the system controls the 
evolution.  Monte Carlo calculations for traps in the form of triangular and square potential wells 
are performed to compliment the analysis and verify the conclusions.  The memory effects due to 
the non-exponential distribution are discussed in details.  The results are believed to be of 
interest for a wide range of applications. 
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